Semantic Roles \& Semantic Role Labeling

Deep Processing Techniques for NLP
February 18, 2015

Roadmap

- Semantic role labeling (SRL):
- Motivation:
- Between deep semantics and slot-filling
- Thematic roles
- Thematic role resources
- PropBank, FrameNet
- Automatic SRL approaches

Semantic Analysis

- Two extremes:
- Full, deep compositional semantics
- Creates full logical form
- Links sentence meaning representation to logical world model representation
- Powerful, expressive, Al-complete

Semantic Analysis

- Two extremes:
- Full, deep compositional semantics
- Creates full logical form
- Links sentence meaning representation to logical world model representation
- Powerful, expressive, Al-complete
- Domain-specific slot-filling:
- Common in dialog systems, IE tasks
- Narrowly targeted to domain/task
- Often pattern-matching
- Low cost, but lacks generality, richness, etc

Semantic Role Labeling

- Typically want to know:
- Who did what to whom, where, when, and how

Semantic Role Labeling

- Typically want to know:
- Who did what to whom, where, when, and how
- Intermediate level:
- Shallower than full deep composition
- Abstracts away (somewhat) from surface form
- Captures general predicate-argument structure info
- Balance generality and specificity

Example

- Yesterday Tom chased Jerry.
- Yesterday Jerry was chased by Tom.
- Tom chased Jerry yesterday.
- Jerry was chased yesterday by Tom.

Example

- Yesterday Tom chased Jerry.
- Yesterday Jerry was chased by Tom.
- Tom chased Jerry yesterday.
- Jerry was chased yesterday by Tom.
- Semantic roles:
- Chaser: Tom
- ChasedThing: Jerry
- TimeOfChasing: yesterday

Example

- Yesterday Tom chased Jerry.
- Yesterday Jerry was chased by Tom.
- Tom chased Jerry yesterday.
- Jerry was chased yesterday by Tom.
- Semantic roles:
- Chaser: Tom
- ChasedThing: Jerry
- TimeOfChasing: yesterday
- Same across all sentence forms

Full Event Semantics

- Neo-Davidsonian style:

Full Event Semantics

- Neo-Davidsonian style:
- exists e. Chasing(e) \& Chaser(e,Tom) \& ChasedThing(e,Jerry) \& TimeOfChasing(e,Yesterday)
- Same across all examples

Full Event Semantics

- Neo-Davidsonian style:
- exists e. Chasing(e) \& Chaser(e,Tom) \& ChasedThing(e,Jerry) \& TimeOfChasing(e,Yesterday)
- Same across all examples
- Roles: Chaser, ChasedThing, TimeOfChasing
- Specific to verb "chase"
- Aka "Deep roles"

Issues

- Challenges:
- How many roles for a language?

Issues

- Challenges:
- How many roles for a language?
- Arbitrarily many deep roles
- Specific to each verb's event structure
- How can we acquire these roles?

Issues

- Challenges:
- How many roles for a language?
- Arbitrarily many deep roles
- Specific to each verb's event structure
- How can we acquire these roles?
- Manual construction?
- Some progress on automatic learning
- Still only successful on limited domains (ATIS, geography)
- Can we capture generalities across verbs/events?

Issues

- Challenges:
- How many roles for a language?
- Arbitrarily many deep roles
- Specific to each verb's event structure
- How can we acquire these roles?
- Manual construction?
- Some progress on automatic learning
- Still only successful on limited domains (ATIS, geography)
- Can we capture generalities across verbs/events?
- Not really, each event/role is specific
- Alternative: thematic roles

Thematic Roles

- Describe semantic roles of verbal arguments
- Capture commonality across verbs

Thematic Roles

- Describe semantic roles of verbal arguments
- Capture commonality across verbs
- E.g. subject of break, open is AGENT
- AGENT: volitional cause
- THEME: things affected by action

Thematic Roles

- Describe semantic roles of verbal arguments
- Capture commonality across verbs
- E.g. subject of break, open is AGENT
- AGENT: volitional cause
- THEME: things affected by action
- Enables generalization over surface order of arguments
- John broke the window

Thematic Roles

- Describe semantic roles of verbal arguments
- Capture commonality across verbs
- E.g. subject of break, open is AGENT
- AGENT: volitional cause
- THEME: things affected by action
- Enables generalization over surface order of arguments
- John AGENT broke the window Theme

Thematic Roles

- Describe semantic roles of verbal arguments
- Capture commonality across verbs
- E.g. subject of break, open is AGENT
- AGENT: volitional cause
- THEME: things affected by action
- Enables generalization over surface order of arguments
- John AGENT broke the window Theme
- The rock broke the window

Thematic Roles

- Describe semantic roles of verbal arguments
- Capture commonality across verbs
- E.g. subject of break, open is AGENT
- AGENT: volitional cause
- THEME: things affected by action
- Enables generalization over surface order of arguments
- John AGENT broke the window ${ }_{\text {Theme }}$
- The rockinstrument broke the $^{\text {mindow }}$ theme

Thematic Roles

- Describe semantic roles of verbal arguments
- Capture commonality across verbs
- E.g. subject of break, open is AGENT
- AGENT: volitional cause
- THEME: things affected by action
- Enables generalization over surface order of arguments
- John AGENT broke the window ${ }_{\text {Theme }}$
- The rock ${ }_{\text {Instrument }}$ broke the window theme $^{\text {din }}$
- The window was broken by John

Thematic Roles

- Describe semantic roles of verbal arguments
- Capture commonality across verbs
- E.g. subject of break, open is AGENT
- AGENT: volitional cause
- THEME: things affected by action
- Enables generalization over surface order of arguments
- John AGENT broke the window ${ }_{\text {Theme }}$
- The rockinstrument broke the $^{\text {bindow }}$ theme
- The window theme was broken by John Agent $^{\text {a }}$

Thematic Roles

- Thematic grid, θ-grid, case frame
- Set of thematic role arguments of verb

Thematic Roles

- Thematic grid, θ-grid, case frame
- Set of thematic role arguments of verb
- E.g. Subject: AGENT; Object: THEME, or Subject: INSTR; Object: THEME

Thematic Roles

- Thematic grid, θ-grid, case frame
- Set of thematic role arguments of verb
- E.g. Subject: AGENT; Object: THEME, or Subject: INSTR; Object: THEME
- Verb/Diathesis Alternations
- Verbs allow different surface realizations of roles

Thematic Roles

- Thematic grid, θ-grid, case frame
- Set of thematic role arguments of verb
- E.g. Subject: AGENT; Object: THEME, or Subject: INSTR; Object: THEME
- Verb/Diathesis Alternations
- Verbs allow different surface realizations of roles
- Doris Agent gave the book theme to Cary Goal $^{\text {G }}$

Thematic Roles

- Thematic grid, θ-grid, case frame
- Set of thematic role arguments of verb
- E.g. Subject: AGENT; Object: THEME, or Subject: INSTR; Object: THEME
- Verb/Diathesis Alternations
- Verbs allow different surface realizations of roles
- Doris Agent gave the book Theme to Cary Goal $^{\text {G }}$

Thematic Roles

- Thematic grid, θ-grid, case frame
- Set of thematic role arguments of verb
- E.g. Subject: AGENT; Object: THEME, or Subject: INSTR; Object: THEME
- Verb/Diathesis Alternations
- Verbs allow different surface realizations of roles
- Doris Agent gave the book Theme to Cary Goal $^{\text {G }}$
- Doris ${ }_{\text {agent }}$ gave Cary ${ }_{\text {goal }}$ the book $\mathrm{k}_{\text {theme }}$
- Group verbs into classes based on shared patterns

Canonical Roles

Thematic Role	Example
AGENT	The waiter spilled the soup.
EXPERIENCER	John has a headache.
FORCE	The wind blows debris from the mall into our yards. Only after Benjamin Franklin broke the ice...
THEME	The French government has built a regulation-size baseball diamond...
CONTENT	Mona asked "You met Mary Ann at a supermarket?"
INSTRUMENT	He turned to poaching catfish, stunning them with a shocking device...
BENEFICIARY	Whenever Ann Callahan makes hotel reservations for her boss... SOURCE
I flew in from Boston.	

Thematic Role Issues

- Hard to produce

Thematic Role Issues

- Hard to produce
- Standard set of roles
- Fragmentation: Often need to make more specific - E,g, INSTRUMENTS can be subject or not

Thematic Role Issues

- Hard to produce
- Standard set of roles
- Fragmentation: Often need to make more specific
- E,g, INSTRUMENTS can be subject or not
- Standard definition of roles
- Most AGENTs: animate, volitional, sentient, causal
- But not all....

Thematic Role Issues

- Hard to produce
- Standard set of roles
- Fragmentation: Often need to make more specific
- E,g, INSTRUMENTS can be subject or not
- Standard definition of roles
- Most AGENTs: animate, volitional, sentient, causal
- But not all....
- Strategies:
- Generalized semantic roles: PROTO-AGENT/PROTO-PATIENT
- Defined heuristically: PropBank

Thematic Role Issues

- Hard to produce
- Standard set of roles
- Fragmentation: Often need to make more specific
- E,g, INSTRUMENTS can be subject or not
- Standard definition of roles
- Most AGENTs: animate, volitional, sentient, causal
- But not all....
- Strategies:
- Generalized semantic roles: PROTO-AGENT/PROTO-PATIENT
- Defined heuristically: PropBank
- Define roles specific to verbs/nouns: FrameNet

PropBank

- Sentences annotated with semantic roles
- Penn and Chinese Treebank

PropBank

- Sentences annotated with semantic roles
- Penn and Chinese Treebank
- Roles specific to verb sense
- Numbered: Arg0, Arg1, Arg2,...
- Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc

PropBank

- Sentences annotated with semantic roles
- Penn and Chinese Treebank
- Roles specific to verb sense
- Numbered: Arg0, Arg1, Arg2,...
- Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
- >1: verb-specific

PropBank

- Sentences annotated with semantic roles
- Penn and Chinese Treebank
- Roles specific to verb sense
- Numbered: Arg0, Arg1, Arg2,...
- ArgO: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
- >1: verb-specific
- E.g. agree. 01
- ArgO: Agreer

PropBank

- Sentences annotated with semantic roles
- Penn and Chinese Treebank
- Roles specific to verb sense
- Numbered: Arg0, Arg1, Arg2,...
- ArgO: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
- >1: verb-specific
- E.g. agree. 01
- ArgO: Agreer
- Arg1: Proposition

PropBank

- Sentences annotated with semantic roles
- Penn and Chinese Treebank
- Roles specific to verb sense
- Numbered: Arg0, Arg1, Arg2,...
- ArgO: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
- >1: verb-specific
- E.g. agree. 01
- Arg0: Agreer
- Arg1: Proposition
- Arg2: Other entity agreeing

PropBank

- Sentences annotated with semantic roles
- Penn and Chinese Treebank
- Roles specific to verb sense
- Numbered: Arg0, Arg1, Arg2,...
- Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
- > 1: Verb-specific
- E.g. agree. 01
- Arg0: Agreer
- Arg1: Proposition
- Arg2: Other entity agreeing
- Ex1: [ArgOThe group] agreed [Argi it wouldn't make an offer]

Propbank

- Resources:
- Annotated sentences
- Started w/Penn Treebank
- Now: Google answerbank, SMS, webtext, etc
- Also English and Arabic
- Framesets:
- Per-sense inventories of roles, examples
- Span verbs, adjectives, nouns (e.g. event nouns)

Propbank

- Resources:
- Annotated sentences
- Started w/Penn Treebank
- Now: Google answerbank, SMS, webtext, etc
- Also English and Arabic
- Framesets:
- Per-sense inventories of roles, examples
- Span verbs, adjectives, nouns (e.g. event nouns)
- http://verbs.colorado.edu/propbank
- Recent status:
- 5940 verbs w/ 8121 framesets;
- 1880 adjectives w/2210 framesets

FrameNet (Fillmore et al)

- Key insight:
- Commonalities not just across diff't sentences w/same verb but across different verbs (and nouns and adjs)

FrameNet (Fillmore et al)

- Key insight:
- Commonalities not just across diff't sentences w/same verb but across different verbs (and nouns and adjs)
- PropBank
- [Arg0 Big Fruit Co.] increased [arg1 the price of bananas].
- [arg1 The price of bananas] was increased by [argo BFCo].
- [Arg1 The price of bananas] increased [arg2 5\%].

FrameNet (Fillmore et al)

- Key insight:
- Commonalities not just across diff't sentences w/same verb but across different verbs (and nouns and adjs)
- PropBank
- [argoBig Fruit Co.] increased [arg1 the price of bananas].
- [Arg1 The price of bananas] was increased by [argo BFCo].
- [arg1 The price of bananas] increased [arg2 5\%].
- FrameNet
- [attribute The price] of [itembananas] increased [diff5\%].
- [attributeThe price] of [itembananas] rose [diff5\%].
- There has been a [diff5\%] rise in [attribute the price] of [item bananas].

FrameNet

- Semantic roles specific to Frame
- Frame: script-like structure, roles (frame elements)

FrameNet

- Semantic roles specific to Frame
- Frame: script-like structure, roles (frame elements)
- E.g. change_position_on_scale: increase, rise
- Attribute, Initial_value, Final_value

FrameNet

- Semantic roles specific to Frame
- Frame: script-like structure, roles (frame elements)
- E.g. change_position_on_scale: increase, rise
- Attribute, Initial_value, Final_value
- Core, non-core roles

FrameNet

- Semantic roles specific to Frame
- Frame: script-like structure, roles (frame elements)
- E.g. change_position_on_scale: increase, rise
- Attribute, Initial_value, Final_value
- Core, non-core roles
- Relationships b/t frames, frame elements
- Add causative: cause_change_position_on_scale

Change of position on scale

VERBS:	dwindle	move	soar	escalation	shift
advance	edge	mushroom	swell	explosion	tumble
climb	explode	plummet	swing	fall	
decline	fall	reach	triple	fluctuation	ADVERBS:
decrease	fluctuate	rise	tumble	gain	increasingly
diminish	gain	rocket		growth	
dip	grow	shift	NOUNS:	hike	
double	increase	skyrocket	decline	increase	
drop	jump	slide	decrease	rise	

Core Roles

$\left.\left.\begin{array}{ll}\hline \text { ATTRIBUTE } & \begin{array}{l}\text { The ATTRIBUTE is a scalar property that the ITEM possesses. } \\ \text { DIFFERENCE }\end{array} \\ \text { The distance by which an ITEM changes its position on the } \\ \text { scale. }\end{array}\right] \begin{array}{ll}\text { A description that presents the ITEM's state after the change in } \\ \text { the ATTRIBUTE's value as an independent predication. }\end{array}\right\}$

FrameNet Inheritance

FrameNet

- Current status:
- 1190 frames
- 12000+ lexical units (mostly verbs, nouns)
- Annotations over:
- Newswire (WSJ, AQUAINT)
- American National Corpus

FrameNet

- Current status:
- 1190 frames
- 12000+ lexical units (mostly verbs, nouns)
- Annotations over:
- Newswire (WSJ, AQUAINT)
- American National Corpus
- Under active development
- Still only $\sim 6 \mathrm{~K}$ verbs, limited coverage

Semantic Role Labeling

- Aka Thematic role labeling, shallow semantic parsing
- Form of predicate-argument extraction

Semantic Role Labeling

- Aka Thematic role labeling, shallow semantic parsing
- Form of predicate-argument extraction
- Task:
- For each predicate in a sentence:
- Identify which constituents are arguments of the predicate
- Determine correct role for each argument

Semantic Role Labeling

- Aka Thematic role labeling, shallow semantic parsing
- Form of predicate-argument extraction
- Task:
- For each predicate in a sentence:
- Identify which constituents are arguments of the predicate
- Determine correct role for each argument
- Both PropBank, FrameNet used as targets
- Potentially useful for many NLU tasks:
- Demonstrated usefulness in Q\&A, IE

SRL in QA

- Intuition:
- Surface forms obscure Q\&A patterns
- Q: What year did the U.S. buy Alaska?
- S_{A} :...before Russia sold Alaska to the United States in 1867
- Learn surface text patterns?

SRL in QA

- Intuition:
- Surface forms obscure Q\&A patterns
- Q: What year did the U.S. buy Alaska?
- S_{A} :...before Russia sold Alaska to the United States in 1867
- Learn surface text patterns?
- Long distance relations, require huge \# of patterns to find
- Learn syntactic patterns?

SRL in QA

- Intuition:
- Surface forms obscure Q\&A patterns
- Q: What year did the U.S. buy Alaska?
- S_{A} :...before Russia sold Alaska to the United States in 1867
- Learn surface text patterns?
- Long distance relations, require huge \# of patterns to find
- Learn syntactic patterns?
- Different lexical choice, different dependency structure

Semantic Roles \& QA

- Approach:
- Perform semantic role labeling
- FrameNet
- Perform structural and semantic role matching
- Use role matching to select answer

Semantic Matching

- Derive semantic structures from sentences
- P: predicate
- Word or phrase evoking FrameNet frame

Semantic Matching

- Derive semantic structures from sentences
- P: predicate
- Word or phrase evoking FrameNet frame
- Set(SRA): set of semantic role assignments
- <w,SR,s>:
- w: frame element; SR: semantic role; s: score

Semantic Matching

- Derive semantic structures from sentences
- P: predicate
- Word or phrase evoking FrameNet frame
- Set(SRA): set of semantic role assignments
- <w,SR,s>:
- w: frame element; SR: semantic role; s: score
- Perform for questions and answer candidates
- Expected Answer Phrases (EAPs) are Qwords
- Who, what, where
- Must be frame elements

Semantic Matching

- Derive semantic structures from sentences
- P: predicate
- Word or phrase evoking FrameNet frame
- Set(SRA): set of semantic role assignments
- <w,SR,s>:
- w: frame element; SR: semantic role; s: score
- Perform for questions and answer candidates
- Expected Answer Phrases (EAPs) are Qwords
- Who, what, where
- Must be frame elements
- Compare resulting semantic structures
- Select highest ranked

Q: Who discovered prions?
S: 1997: Stanley B. Prusiner, United States, discovery of prions, ...

SemStruc ${ }^{9}$
p: discover
Original SR assignments:

Optimized SR assignments:

SemStruc ${ }^{a c}$ (ac: Stanley B. Prusiner)
p: discovery
Original SR assignments:
ac

Optimized SR assignments:
ac
$\xlongequal{0.25}$ Cognizer

Summary

- FrameNet and QA:
- FrameNet still limited (coverage/annotations)
- Bigger problem is lack of alignment b/t Q \& A frames
- Even if limited,
- Substantially improves where applicable
- Useful in conjunction with other QA strategies
- Soft role assignment, matching key to effectiveness

SRL Subtasks

- Argument identification:
- The San Francisco Examiner issued a special edition yesterday.
- Which spans are arguments?

SRL Subtasks

- Argument identification:
- The [San Francisco Examiner] issued [a special edition] [yesterday].
- Which spans are arguments?
- In general (96\%), arguments are (gold) parse constituents
- 90% arguments are aligned w/auto parse constituents
- Role labeling:
- The San Francisco Examiner issued a special edition yesterday.

SRL Subtasks

- Argument identification:
- The [San Francisco Examiner] issued [a special edition] [yesterday].
- Which spans are arguments?
- In general (96\%), arguments are (gold) parse constituents
- 90% arguments are aligned w/auto parse constituents
- Role labeling:
- The [argo San Francisco Examiner] issued [Arg1 a special edition] [argM-tmpyesterday].

Semantic Role Complexities

- Discontinuous arguments:
- [Arg1 The pearls], [argo she] said, [c.Arg1 are fake].
- Arguments can include referents/pronouns:
- [Argo The pearls], [R.Argo that] are [Arg1 fake]

SRL over Parse Tree

Figure 20.16 Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line shows the path feature NP $\uparrow \mathrm{S} \downarrow \mathrm{VP} \downarrow \mathrm{VBD}$ for ARG0, the NP-SBJ constituent the San Francisco Examiner.

Basic SRL Approach

- Generally exploit supervised machine learning
- Parse sentence (dependency/constituent)
- For each predicate in parse:
- For each node in parse:
- Create a feature vector representation
- Classify node as semantic role (or none)
- Much design in terms of features for classification

Classification Features

- Gildea \& Jurafsky, 2002 (foundational work)
- Employed in most SRL systems
- Features:
- specific to candidate constituent argument
- for predicate generally

Classification Features

- Gildea \& Jurafsky, 2002 (foundational work)
- Employed in most SRL systems
- Features:
- specific to candidate constituent argument
- for predicate generally
- Governing predicate:
- Nearest governing predicate to the current node
- Verbs usually (also adj, noun in FrameNet)
- E.g. 'issued’
- Crucial: roles determined by predicate

SRL Features

- Constituent internal information:
- Phrase type:
- Parse node dominating this constituent

SRL Features

- Constituent internal information:
- Phrase type:
- Parse node dominating this constituent
- E.g. NP
- Different roles tend to surface as different phrase types
- Head word:

SRL Features

- Constituent internal information:
- Phrase type:
- Parse node dominating this constituent
- E.g. NP
- Different roles tend to surface as different phrase types
- Head word:
- E.g. Examiner
- Words associated w/specific roles - e.g. pronouns as agents
- POS of head word:
- E.g. NNP

SRL Features

- Structural features:
- Path: Sequence of parse nodes from const to pred

SRL Features

- Structural features:
- Path: Sequence of parse nodes from const to pred
- E.g. NP $\uparrow \mathrm{S} \downarrow$ VP $\downarrow \mathrm{VBD}$
- Arrows indicate direction of traversal
- Can capture grammatical relations

SRL Features

- Structural features:
- Path: Sequence of parse nodes from const to pred
- E.g. NP $\uparrow S \downarrow$ VP $\downarrow \mathrm{VBD}$
- Arrows indicate direction of traversal
- Can capture grammatical relations
- Linear position:
- Binary: Is constituent before or after predicate

SRL Features

- Structural features:
- Path: Sequence of parse nodes from const to pred
- E.g. ${ }^{\text {NP } \uparrow S \downarrow V P \downarrow V B D}$
- Arrows indicate direction of traversal
- Can capture grammatical relations
- Linear position:
- Binary: Is constituent before or after predicate
- E.g. before
- Voice:
- Active or passive of clause where constituent appears

SRL Features

- Structural features:
- Path: Sequence of parse nodes from const to pred
- E.g. NP $\uparrow \mathrm{S} \downarrow \mathrm{VP} \downarrow \mathrm{VBD}$
- Arrows indicate direction of traversal
- Can capture grammatical relations
- Linear position:
- Binary: Is constituent before or after predicate
- E.g. before
- Voice:
- Active or passive of clause where constituent appears
- E.g. active (strongly influences other order, paths, etc)
- Verb subcategorization

Other SRL Constraints

- Many other features employed in SRL
- E.g. NER on constituents, neighboring words, path info
- Global Labeling constraints:

Other SRL Constraints

- Many other features employed in SRL
- E.g. NER on constituents, neighboring words, path info
- Global Labeling constraints:
- Non-overlapping arguments:
- FrameNet, PropBank both require
- No duplicate roles:
- Labeling of constituents is not independent
- Assignment to one constituent changes probabilities for others

Other SRL Constraints

- Many other features employed in SRL
- E.g. NER on constituents, neighboring words, path info
- Global Labeling constraints:
- Non-overlapping arguments:
- FrameNet, PropBank both require
- No duplicate roles:
- Labeling of constituents is not independent
- Assignment to one constituent changes probabilities for others

Classification Approaches

- Many SRL systems use standard classifiers
- E.g. MaxEnt, SVM
- However, hard to effectively exploit global constraints

Classification Approaches

- Many SRL systems use standard classifiers
- E.g. MaxEnt, SVM
- However, hard to effectively exploit global constraints
- Alternative approaches
- Classification + reranking
- Joint modeling
- Integer Linear Programming (ILP)
- Allows implementation of global constraints over system

State-of-the-Art

- Best system from CoNLL shared task (PropBank) - ILP-based system (Punyakanok)

F1

FrameNet Parsing

- (Das et al., 2014)
- Identify targets that evoke frames
- ~ 79.2\% F-measures
- Classify targets into frames
- 61\% for exact match
- Identify arguments
- ~ 50%

SRL Challenges

- Open issues:
- SRL degrades significantly across domains
- E.g. WSJ \rightarrow Brown: Drops > 12\% F-measure
- SRL depends heavily on effectiveness of other NLP
- E.g. POS tagging, parsing, etc
- Errors can accumulate
- Coverage/generalization remains challenging
- Resource coverage still gappy (FrameNet, PropBank)
- Publicly available implementations:
- Shalmaneser, SEMAFOR

Lexical Semantics

What is a plant?

There are more kinds of plants and animals in the rainforests than anywhere else on Earth. Over half of the millions of known species of plants and animals live in the rainforest. Many are found nowhere else. There are even plants and animals in the rainforest that we have not yet discovered.

The Paulus company was founded in 1938. Since those days the product range has been the subject of constant expansions and is brought up continuously to correspond with the state of the art. We' re engineering, manufacturing, and commissioning world-wide ready-to-run plants packed with our comprehensive know-how.

Lexical Semantics

- So far, word meanings discrete
- Constants, predicates, functions

Lexical Semantics

- So far, word meanings discrete
- Constants, predicates, functions
- Focus on word meanings:
- Relations of meaning among words
- Similarities \& differences of meaning in sim context

Lexical Semantics

- So far, word meanings discrete
- Constants, predicates, functions
- Focus on word meanings:
- Relations of meaning among words
- Similarities \& differences of meaning in sim context
- Internal meaning structure of words
- Basic internal units combine for meaning

Terminology

- Lexeme:
- Form: Orthographic/phonological + meaning

Terminology

- Lexeme:
- Form: Orthographic/phonological + meaning
- Represented by lemma
- Lemma: citation form; infinitive in inflection
- Sing: sing, sings, sang, sung,...

Terminology

- Lexeme:
- Form: Orthographic/phonological + meaning
- Represented by lemma
- Lemma: citation form; infinitive in inflection
- Sing: sing, sings, sang, sung,...
- Lexicon: finite list of lexemes

Sources of Confusion

- Homonymy:
- Words have same form but different meanings
- Generally same POS, but unrelated meaning

Sources of Confusion

- Homonymy:
- Words have same form but different meanings
- Generally same POS, but unrelated meaning
- E.g. bank (side of river) vs bank (financial institution)
- bank ${ }^{1}$ vs bank ${ }^{2}$

Sources of Confusion

- Homonymy:
- Words have same form but different meanings
- Generally same POS, but unrelated meaning
- E.g. bank (side of river) vs bank (financial institution)
- bank ${ }^{1}$ vs bank ${ }^{2}$
- Homophones: same phonology, diff' t orthographic form
- E.g. two, to, too

Sources of Confusion

- Homonymy:
- Words have same form but different meanings
- Generally same POS, but unrelated meaning
- E.g. bank (side of river) vs bank (financial institution)
- bank ${ }^{1}$ vs bank ${ }^{2}$
- Homophones: same phonology, diff' t orthographic form
- E.g. two, to, too
- Homographs: Same orthography, diff' t phonology
- Why?

Sources of Confusion

- Homonymy:
- Words have same form but different meanings
- Generally same POS, but unrelated meaning
- E.g. bank (side of river) vs bank (financial institution)
- bank ${ }^{1}$ vs bank ${ }^{2}$
- Homophones: same phonology, diff' t orthographic form
- E.g. two, to, too
- Homographs: Same orthography, diff't phonology
- Why?
- Problem for applications: TTS, ASR transcription, IR

Sources of Confusion II

- Polysemy
- Multiple RELATED senses
- E.g. bank: money, organ, blood,...

Sources of Confusion II

- Polysemy
- Multiple RELATED senses
- E.g. bank: money, organ, blood,...
- Big issue in lexicography
- \# of senses, relations among senses, differentiation
- E.g. serve breakfast, serve Philadelphia, serve time

Relations between Senses

- Synonymy:
- (near) identical meaning

Relations between Senses

- Synonymy:
- (near) identical meaning
- Substitutability
- Maintains propositional meaning
- Issues:

Relations between Senses

- Synonymy:
- (near) identical meaning
- Substitutability
- Maintains propositional meaning
- Issues:
- Polysemy - same as some sense

Relations between Senses

- Synonymy:
- (near) identical meaning
- Substitutability
- Maintains propositional meaning
- Issues:
- Polysemy - same as some sense
- Shades of meaning - other associations:
- Price/fare; big/large; water $\mathrm{H}_{2} \mathrm{O}$

Relations between Senses

- Synonymy:
- (near) identical meaning
- Substitutability
- Maintains propositional meaning
- Issues:
- Polysemy - same as some sense
- Shades of meaning - other associations:
- Price/fare; big/large; water $\mathrm{H}_{2} \mathrm{O}$
- Collocational constraints: e.g. babbling brook

Relations between Senses

- Synonymy:
- (near) identical meaning
- Substitutability
- Maintains propositional meaning
- Issues:
- Polysemy - same as some sense
- Shades of meaning - other associations:
- Price/fare; big/large; water $\mathrm{H}_{2} \mathrm{O}$
- Collocational constraints: e.g. babbling brook
- Register:
- social factors: e.g. politeness, formality

Relations between Senses

- Antonyms:
- Opposition
- Typically ends of a scale
- Fast/slow; big/little

Relations between Senses

- Antonyms:
- Opposition
- Typically ends of a scale
- Fast/slow; big/little
- Can be hard to distinguish automatically from syns

Relations between Senses

- Antonyms:
- Opposition
- Typically ends of a scale
- Fast/slow; big/little
- Can be hard to distinguish automatically from syns
- Hyponomy:
- Isa relations:
- More General (hypernym) vs more specific (hyponym)
- E.g. dog/golden retriever; fruit/mango;

Relations between Senses

- Antonyms:
- Opposition
- Typically ends of a scale
- Fast/slow; big/little
- Can be hard to distinguish automatically from syns
- Hyponomy:
- Isa relations:
- More General (hypernym) vs more specific (hyponym)
- E.g. dog/golden retriever; fruit/mango;
- Organize as ontology/taxonomy

WordNet Taxonomy

- Most widely used English sense resource
- Manually constructed lexical database

WordNet Taxonomy

- Most widely used English sense resource
- Manually constructed lexical database
- 3 Tree-structured hierarchies
- Nouns (117K), verbs (11K), adjective+adverb (27K)

WordNet Taxonomy

- Most widely used English sense resource
- Manually constructed lexical database
- 3 Tree-structured hierarchies
- Nouns (117K), verbs (11K), adjective+adverb (27K)
- Entries: synonym set, gloss, example use

WordNet Taxonomy

- Most widely used English sense resource
- Manually constructed lexical database
- 3 Tree-structured hierarchies
- Nouns (117K), verbs (11K), adjective+adverb (27K)
- Entries: synonym set, gloss, example use
- Relations between entries:
- Synonymy: in synset
- Hypo(per)nym: Isa tree

WordNet

The noun "bass" has 8 senses in WordNet.

1. bass ${ }^{1}$ - (the lowest part of the musical range)
2. bass 2, bass part ${ }^{1}$ - (the lowest part in polyphonic music)
3. bass 3, basso 1 - (an adult male singer with the lowest voice)
4. sea bass ${ }^{1}$, bass ${ }^{4}$ - (the lean flesh of a saltwater fish of the family Serranidae)
5. freshwater bass ${ }^{1}$, bass 5 - (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
6. bass 6, bass voice ${ }^{1}$, basso 2 - (the lowest adult male singing voice)
7. bass ${ }^{7}$ - (the member with the lowest range of a family of musical instruments)
8. bass 8 - (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

The adjective "bass" has 1 sense in WordNet.

1. bass ${ }^{1}$, deep ${ }^{6}$ - (having or denoting a low vocal or instrumental range) "a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"

Noun WordNet Relations

Relation	Also Called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	breakfast $^{1} \rightarrow$ meal 1
Hyponym	Subordinate	From concepts to subtypes	meal $^{1} \rightarrow$ lunch 1
Instance Hypernym	Instance	From instances to their concepts	Austen $^{1} \rightarrow$ author 1
Instance Hyponym	Has-Instance	From concepts to concept instances	composer $^{1} \rightarrow$ Bach 1
Member Meronym	Has-Member	From groups to their members	faculty $^{2} \rightarrow$ professor 1
Member Holonym	Member-Of	From members to their groups	copilot $^{1} \rightarrow$ crew 1
Part Meronym	Has-Part	From wholes to parts	table $^{2} \rightarrow$ leg 3
Part Holonym	Part-Of	From parts to wholes	course $^{7} \rightarrow$ meal 1
Substance Meronym		From substances to their subparts	water $^{1} \rightarrow$ oxygen 1
Substance Holonym		From parts of substances to wholes	gin $^{1} \rightarrow$ martini 1
Antonym	Semantic opposition between lemmas	leader $^{1} \Longleftrightarrow$ follower 1	
Derivationally		Lemmas w/same morphological root	destruction $^{1} \Longleftrightarrow$ destroy 1
Related Form			

WordNet Taxonomy

```
Sense 3
bass, basso --
(an adult male singer with the lowest voice)
=> singer, vocalist, vocalizer, vocaliser
    => musician, instrumentalist, player
        => performer, performing artist
            => entertainer
            => person, individual, someone...
                    => organism, being
                    => living thing, animate thing,
                        => whole, unit
                    => object, physical object
                        => physical entity
                        => entity
            => causal agent, cause, causal agency
        => physical entity
                        => entity
```


Selectional Restrictions

- Semantic type constraint on arguments
- I want to eat someplace close to UW

Selectional Restrictions

- Semantic type constraint on arguments
- I want to eat someplace close to UW
- E.g. THEME of eating should be edible
- Associated with senses

Selectional Restrictions

- Semantic type constraint on arguments
- I want to eat someplace close to UW
- E.g. THEME of eating should be edible
- Associated with senses
- Vary in specificity:

Selectional Restrictions

- Semantic type constraint on arguments
- I want to eat someplace close to UW
- E.g. THEME of eating should be edible
- Associated with senses
- Vary in specificity:
- Imagine: AGENT: human/sentient; THEME: any

Selectional Restrictions

- Semantic type constraint on arguments
- I want to eat someplace close to UW
- E.g. THEME of eating should be edible
- Associated with senses
- Vary in specificity:
- Imagine: AGENT: human/sentient; THEME: any
- Representation:
- Add as predicate in FOL event representation

Selectional Restrictions

- Semantic type constraint on arguments
- I want to eat someplace close to UW
- E.g. THEME of eating should be edible
- Associated with senses
- Vary in specificity:
- Imagine: AGENT: human/sentient; THEME: any
- Representation:
- Add as predicate in FOL event representation
- Overkill computationally; requires large commonsense KB

Selectional Restrictions

- Semantic type constraint on arguments
- I want to eat someplace close to UW
- E.g. THEME of eating should be edible
- Associated with senses
- Vary in specificity:
- Imagine: AGENT: human/sentient; THEME: any
- Representation:
- Add as predicate in FOL event representation
- Overkill computationally; requires large commonsense KB
- Associate with WordNet synset (and hyponyms)

Primitive Decompositions

- Jackendoff(1990), Dorr(1999), McCawley (1968)
- Word meaning constructed from primitives
- Fixed small set of basic primitives
- E.g. cause, go, become,
- kill=cause X to become Y

Primitive Decompositions

- Jackendoff(1990), Dorr(1999), McCawley (1968)
- Word meaning constructed from primitives
- Fixed small set of basic primitives
- E.g. cause, go, become,
- kill=cause X to become Y
- Augment with open-ended "manner"
- $Y=$ not alive
- E.g. walk vs run

Primitive Decompositions

- Jackendoff(1990), Dorr(1999), McCawley (1968)
- Word meaning constructed from primitives
- Fixed small set of basic primitives
- E.g. cause, go, become,
- kill=cause X to become Y
- Augment with open-ended "manner"
- $Y=$ not alive
- E.g. walk vs run
- Fixed primitives/Infinite descriptors

