Introduction to Deep Processing Techniques for NLP

Deep Processing Techniques for NLP
Ling 571
January 5, 2015
Gina-Anne Levow

Roadmap

- Motivation:
- Applications
- Language and Thought
- Knowledge of Language
- Cross-cutting themes
- Ambiguity, Evaluation, \& Multi-linguality
- Course Overview

Motivation: Applications

- Applications of Speech and Language Processing
- Call routing
- Information retrieval
- Question-answering
- Machine translation
- Dialog systems
- Spell-, Grammar- checking
- Sentiment Analysis
- Information extraction....

Building on Many Fields

- Linguistics: Morphology, phonology, syntax, semantics,..
- Psychology: Reasoning, mental representations
- Formal logic
- Philosophy (of language)
- Theory of Computation: Automata,..
- Artificial Intelligence: Search, Reasoning, Knowledge representation, Machine learning, Pattern matching
- Probability..

Language \& Intelligence

- Turing Test: (1950) - Operationalize intelligence
- Two contestants: human, computer
- Judge: human
- Test: Interact via text questions
- Question: Can you tell which contestant is human?
- Crucially requires language use and understanding

Limitations of Turing Test

- ELIZA (Weizenbaum 1966)
- Simulates Rogerian therapist
- User: You are like my father in some ways
- ELIZA: WHAT RESEMBLANCE DO YOU SEE
- User: You are not very aggressive
- ELIZA: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE...
- Passes the Turing Test!! (sort of)
- "You can fool some of the people...."
- Simple pattern matching technique
- True understanding requires deeper analysis \& processing

Turing Test Revived

- "On the web, no one knows you're a...."
- Problem: ‘bots’
- Automated agents swamp services
- Challenge: Prove you're human
- Test: Something human can do, 'bot can't
- Solution: CAPTCHAs
- Distorted images: trivial for human; hard for 'bot*
- Key: Perception, not reasoning

Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
- Dave: Open the pod bay doors, HAL.
- HAL: I'm sorry, Dave. I'm afraid I can't do that.

Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
- Dave: Open the pod bay doors, HAL.
- HAL: I'm sorry, Dave. I'm afraid I can't do that.
- Phonetics \& Phonology (Ling 450/550)
- Sounds of a language, acoustics
- Legal sound sequences in words

Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
- Dave: Open the pod bay doors, HAL.
- HAL: I'm sorry, Dave. I'm afraid I can't do that.
- Morphology (Ling 570)
- Recognize, produce variation in word forms
- Singular vs. plural: Door + sg: -> door; Door + plural -> doors
- Verb inflection: $\mathrm{Be}+1^{\text {st }}$ person, sg, present $\cdot>$ am

Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
- Dave: Open the pod bay doors, HAL.
- HAL: I'm sorry, Dave. I'm afraid I can't do that.
- Part-of-speech tagging (Ling 570)
- Identify word use in sentence
- Bay (Noun) ... Not verb, adjective

Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
- Dave: Open the pod bay doors, HAL.
- HAL: I'm sorry, Dave. I'm afraid I can't do that.
- Syntax
- (Ling 566: analysis;
- Ling 570 - chunking; Ling 571- parsing)
- Order and group words in sentence
- I'm I do , sorry that afraid Dave I can't.

Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
- Dave: Open the pod bay doors, HAL.
- HAL: I'm sorry, Dave. I'm afraid I can't do that.
- Semantics (Ling 571)
- Word meaning:
- individual (lexical), combined (compositional)
- ‘Open’ : AGENT cause THEME to become open;
- 'pod bay doors' : (pod bay) doors

Knowledge of Language

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
- Dave: Open the pod bay doors, HAL. (request)
- HAL: I'm sorry, Dave. I'm afraid I can't do that. (statement)
- Pragmatics/Discourse/Dialogue (Ling 571)
- Interpret utterances in context
- Speech act (request, statement)
- Reference resolution: I = HAL; that = 'open doors'
- Politeness: I'm sorry, I'm afraid I can't

Language Processing Pipeline

Shallow vs Deep Processing

- Shallow processing (Ling 570)
- Usually relies on surface forms (e.g., words)
- Less elaborate linguistics representations
- E.g. HMM POS-tagging; FST morphology
- Deep processing (Ling 571)
- Relies on more elaborate linguistic representations
- Deep syntactic analysis (Parsing)
- Rich spoken language understanding (NLU)

Cross-cutting Themes

- Ambiguity
- How can we select among alternative analyses?
- Evaluation
- How well does this approach perform:
- On a standard data set?
- When incorporated into a full system?
- Multi-linguality
- Can we apply this approach to other languages?
- How much do we have to modify it to do so?

Ambiguity

- "I made her duck"
- Means....

Ambiguity

- "I made her duck"
- Means....
- I caused her to duck down
- I made the (carved) duck she has
- I cooked duck for her
- I cooked the duck she owned
- I magically turned her into a duck

Ambiguity: POS

- "I made her duck"
- Means....
- I caused her to duck down
- I made the (carved) duck she has
- I cooked duck fokher
- I cooked the duck So owned
- I magically turned herinto a duck

Ambiguity: Syntax

- "I made her duck"
- Means....
- I made the (carved) duck she has
- ((VP (V made) (NP (POSS her) (N duck)))
- I cooked duck for her
- ((VP (V made) (NP (PRON her)) (NP (N (duck)))

Ambiguity: Semantics

- "I made her duck"
- Means....
- I caused her to duck down
- Make: AG cause TH to do sth
- I cooked duck for her
- Make: AG cook TH for REC
- I cooked the duck she owned
- Make: AG cook TH
- I magically turned her into a duck
- Duck: animal
- I made the (carved) duck she has
- Duck: duck-shaped figurine

Ambiguity

- Pervasive
- Pernicious
- Particularly challenging for computational systems
- Problem we will return to again and again in class

Course Information

- http://courses.washington.edu/ling571

Syntax

Ling 571
Deep Processing Techniques for Natural Language Processing January 5, 2015

Roadmap

- Sentence Structure
- Motivation: More than a bag of words
- Constituency
- Representation:
- Context-free grammars
- Formal definition of context free grammars
- Chomsky hierarchy
- Why not finite state?
- Aside: Context-sensitivity

More than a Bag of Words

- Sentences are structured:
- Impacts meaning:
- Dog bites man vs man bites dog
- Impacts acceptability:
- Dog man bites

Constituency

- Constituents: basic units of sentences
- word or group of words that acts as a single unit
- Phrases:
- Noun phrase (NP), verb phrase (VP), prepositional phrase (PP), etc
- Single unit: type determined by head (e.g., N.>NP)

Constituency

- How can we tell what units are constituents?
- On September seventeenth, I'd like to fly from SeaTac Airport to Denver.

Constituency

- How can we tell what units are constituents?
- On September seventeenth, I'd like to fly from SeaTac Airport to Denver.
- September seventeenth
- On September seventeen
- Sea-Tac Airport
- from Sea-Tac Airport

Constituency Testing

- Appear in similar contexts
- PPs, NPs, PPs
- Preposed or Postposed constructions
- On September seventeenth, I'd like to fly from Sea-Tac Airport to Denver.
- I'd like to fly from Sea-Tac Airport to Denver on September seventeenth.
- Must move as unit
- *On l'd like to fly September seventeenth from Sea-Tac Airport to Denver.
- *I'd like to fly on September from Sea-Tac airport to Denver seventeenth.

Representing Sentence Structure

- Captures constituent structure
- Basic units
- Phrases
- Subcategorization
- Argument structure
- Components expected by verbs
- Hierarchical

Representation: Context-free Grammars

- CFGs: 4-tuple
- A set of terminal symbols: Σ
- A set of non-terminal symbols: N
- A set of productions P: of the form A -> α
- Where A is a non-terminal and α in ($\Sigma \mathrm{U} N)^{*}$
- A designated start symbol S
- $L=W \mid w$ in \sum^{*} and $S=>^{*} w$
- Where $S=>^{*}$ w means S derives w by some seq

Representation: Context-free Grammars

- Partial example
- Σ : the, cat, dog, bit, bites, man
- N: NP, VP, AdjP, Nom, Det, V, N, Adj,
- P: S \rightarrow NP VP; NP \rightarrow Det Nom; Nom \rightarrow N Nom \mid N; $\mathrm{VP} \rightarrow \mathrm{V} N \mathrm{~N}, \mathrm{~N} \rightarrow$ cat, $\mathrm{N} \rightarrow$ dog, $\mathrm{N} \rightarrow$ man, Det \rightarrow the, $\mathrm{V} \rightarrow$ bit, $V \rightarrow$ bites
- S

Sentence-level Knowledge: Syntax

- Different models of language
- Specify the expressive power of a formal language

Chomsky
Hierarchy

Representing Sentence Structure

- Why not just Finite State Models?
- Cannot describe some grammatical phenomena
- Inadequate expressiveness to capture generalization
- Center embedding
- Finite State: $A \rightarrow w^{*} ; A \rightarrow w^{*} B$
- Context-Free: $\quad A \Rightarrow \alpha A \beta$
- Allows recursion
- The luggage arrived.
- The luggage that the passengers checked arrived.
- The luggage that the passengers that the storm delayed checked arrived.

Parsing Goals

- Accepting:
- Legal string in language?
- Formally: rigid
- Practically: degrees of acceptability
- Analysis
- What structure produced the string?
- Produce one (or all) parse trees for the string
- Will develop techniques to produce analyses of sentences
- Rigidly accept (with analysis) or reject
- Produce varying degrees of acceptability

