
CKY Parsing
Ling571

Deep Processing Approaches to NLP
January 12, 2015

Roadmap
�  Motivation:

�  Inefficiencies of parsing-as-search

�  Strategy: Dynamic Programming

�  Chomsky Normal Form
�  Weak and strong equivalence

�  CKY parsing algorithm

 Speech and Language Processing -
Jurafsky and Martin

Top-down parsing (DFS)

Bottom-Up Search

Parsing Challenges
�  Ambiguity

�  Repeated substructure

�  Recursion

Parsing Ambiguity
�  Many sources of parse ambiguity

�  Lexical ambiguity
�  Book/N; Book/V

Parsing Ambiguity
�  Many sources of parse ambiguity

�  Lexical ambiguity
�  Book/N; Book/V

�  Structural ambiguity: Main types:
�  Attachment ambiguity

�  Constituent can attach in multiple places

�  I shot an elephant in my pyjamas.

Parsing Ambiguity
�  Many sources of parse ambiguity

�  Lexical ambiguity
�  Book/N; Book/V

�  Structural ambiguity: Main types:
�  Attachment ambiguity

�  Constituent can attach in multiple places
�  I shot an elephant in my pyjamas.

�  Coordination ambiguity
�  Different constituents can be conjoined

�  Old men and women

Ambiguity

 Speech and Language Processing -
Jurafsky and Martin

Disambiguation
�  Global ambiguity:

�  Multiple complete alternative parses

�  Need strategy to select correct one
�  Approaches exploit other information

Disambiguation
�  Global ambiguity:

�  Multiple complete alternative parses

�  Need strategy to select correct one
�  Approaches exploit other information

�  Statistical

�  Some prepositional structs more likely to attach high/low

�  Some phrases more likely, e.g., (old (men and women))

Disambiguation
�  Global ambiguity:

�  Multiple complete alternative parses

�  Need strategy to select correct one
�  Approaches exploit other information

�  Statistical

�  Some prepositional structs more likely to attach high/low

�  Some phrases more likely, e.g., (old (men and women))

�  Semantic

Disambiguation
�  Global ambiguity:

�  Multiple complete alternative parses

�  Need strategy to select correct one
�  Approaches exploit other information

�  Statistical

�  Some prepositional structs more likely to attach high/low

�  Some phrases more likely, e.g., (old (men and women))

�  Semantic

�  Pragmatic

�  E.g., elephants and pyjamas

�  Alternatively, keep all

Disambiguation
�  Global ambiguity:

�  Multiple complete alternative parses
�  Need strategy to select correct one

�  Approaches exploit other information
�  Statistical

�  Some prepositional structs more likely to attach high/low
�  Some phrases more likely, e.g., (old (men and women))

�  Semantic
�  Pragmatic

�  E.g., elephants and pyjamas
�  Alternatively, keep all

�  Local ambiguity:
�  Ambiguity in subtree, resolved globally

Repeated Work
�  Top-down and bottom-up parsing both lead to

repeated substructures
�  Globally bad parses can construct good subtrees

�  But overall parse will fail

�  Require reconstruction on other branch

�  No static backtracking strategy can avoid

Repeated Work
�  Top-down and bottom-up parsing both lead to

repeated substructures
�  Globally bad parses can construct good subtrees

�  But overall parse will fail

�  Require reconstruction on other branch

�  No static backtracking strategy can avoid

�  Efficient parsing techniques require storage of
shared substructure
�  Typically with dynamic programming

Repeated Work
�  Top-down and bottom-up parsing both lead to repeated

substructures
�  Globally bad parses can construct good subtrees

�  But overall parse will fail
�  Require reconstruction on other branch

�  No static backtracking strategy can avoid

�  Efficient parsing techniques require storage of shared
substructure
�  Typically with dynamic programming

�  Example: a flight from Indianapolis to Houston on TWA

Shared Sub-Problems

1/10/15
 Speech and Language Processing -
Jurafsky and Martin

Shared Sub-Problems

1/10/15
 Speech and Language Processing -
Jurafsky and Martin

Shared Sub-Problems

1/10/15
 Speech and Language Processing -
Jurafsky and Martin

Shared Sub-Problems

1/10/15
 Speech and Language Processing -
Jurafsky and Martin

Recursion
�  Many grammars have recursive rules

�  E.g., S à S Conj S

�  In search approaches, recursion is problematic
�  Can yield infinite searches

�  Esp., top-down

Dynamic Programming
�  Challenge: Repeated substructure à Repeated work

Dynamic Programming
�  Challenge: Repeated substructure à Repeated work

�  Insight:
�  Global parse composed of parse substructures

�  Can record parses of substructures

Dynamic Programming
�  Challenge: Repeated substructure à Repeated work

�  Insight:
�  Global parse composed of parse substructures

�  Can record parses of substructures

�  Dynamic programming avoids repeated work by
tabulating solutions to subproblems
�  Here, stores subtrees

Parsing w/Dynamic
Programming

�  Avoids repeated work

�  Allows implementation of (relatively) efficient
parsing algorithms
�  Polynomial time in input length

�  Typically cubic () or less n3

Parsing w/Dynamic
Programming

�  Avoids repeated work

�  Allows implementation of (relatively) efficient
parsing algorithms
�  Polynomial time in input length

�  Typically cubic () or less

�  Several different implementations
�  Cocke-Kasami-Younger (CKY) algorithm

�  Earley algorithm
�  Chart parsing

n3

Chomsky Normal Form
(CNF)

�  CKY parsing requires grammars in CNF

�  Chomsky Normal Form
�  All productions of the form:

�  A à B C, or

�  A à a

Chomsky Normal Form
(CNF)

�  CKY parsing requires grammars in CNF

�  Chomsky Normal Form
�  All productions of the form:

�  A à B C, or

�  A à a

�  However, most of our grammars are not of this form
�  E.g., S à Wh-NP Aux NP VP

Chomsky Normal Form
(CNF)

�  CKY parsing requires grammars in CNF

�  Chomsky Normal Form
�  All productions of the form:

�  A à B C, or

�  A à a

�  However, most of our grammars are not of this form
�  E.g., S à Wh-NP Aux NP VP

�  Need a general conversion procedure
�  Any arbitrary grammar can be converted to CNF

CNF Conversion
�  Three main conditions:

CNF Conversion
�  Three main conditions:

�  Hybrid rules:
�  INF-VP à to VP

CNF Conversion
�  Three main conditions:

�  Hybrid rules:
�  INF-VP à to VP

�  Unit productions:
�  A à B

CNF Conversion
�  Three main conditions:

�  Hybrid rules:
�  INF-VP à to VP

�  Unit productions:
�  A à B

�  Long productions:
�  A à B C D

CNF Conversion
�  Hybrid rule conversion:

�  Replace all terminals with dummy non-terminals

�  E.g., INF-VP à to VP

CNF Conversion
�  Hybrid rule conversion:

�  Replace all terminals with dummy non-terminals

�  E.g., INF-VP à to VP
�  INF-VP à TO VP; TO à to

CNF Conversion
�  Hybrid rule conversion:

�  Replace all terminals with dummy non-terminals

�  E.g., INF-VP à to VP
�  INF-VP à TO VP; TO à to

�  Unit productions:
�  Rewrite RHS with RHS of all derivable non-unit

productions
�  If and B à w, then add A à w A⇒

∗

B

CNF Conversion
�  Long productions:

�  Introduce new non-terminals and spread over rules

�  S à Aux NP VP

CNF Conversion
�  Long productions:

�  Introduce new non-terminals and spread over rules

�  S à Aux NP VP
�  S à X1 VP; X1 à Aux NP

CNF Conversion
�  Long productions:

�  Introduce new non-terminals and spread over rules

�  S à Aux NP VP
�  S à X1 VP; X1 à Aux NP

�  For all non-conforming rules,
�  Convert terminals to dummy non-terminals
�  Convert unit productions

�  Binarize all resulting rules

CKY Parsing
�  Cocke-Kasami-Younger parsing algorithm:

�  (Relatively) efficient bottom-up parsing algorithm
based on tabulating substring parses to avoid
repeated work

CKY Parsing
�  Cocke-Kasami-Younger parsing algorithm:

�  (Relatively) efficient bottom-up parsing algorithm
based on tabulating substring parses to avoid
repeated work

�  Approach:
�  Use a CNF grammar

�  Build an (n+1) x (n+1) matrix to store subtrees
�  Upper triangular portion

�  Incrementally build parse spanning whole input string

Dynamic Programming in
CKY

�  Key idea:
�  For a parse spanning substring [i,j] , there exists

some k such there are parses spanning [i,k] and [k,j]
�  We can construct parses for whole sentence by building

up from these stored partial parses

Dynamic Programming in
CKY

�  Key idea:
�  For a parse spanning substring [i,j] , there exists

some k such there are parses spanning [i,k] and [k,j]
�  We can construct parses for whole sentence by building

up from these stored partial parses

�  So,
�  To have a rule A à B C in [i,j],

�  We must have B in [i,k] and C in [k,j], for some i<k<j
�  CNF grammar forces this for all j>i+1

CKY
�  Given an input string S of length n,

�  Build table (n+1) x (n+1)

�  Indexes correspond to inter-word positions
�  E.g., 0 Book 1 That 2 Flight 3

CKY
�  Given an input string S of length n,

�  Build table (n+1) x (n+1)

�  Indexes correspond to inter-word positions
�  E.g., 0 Book 1 That 2 Flight 3

�  Cells [i,j] contain sets of non-terminals of ALL
constituents spanning i,j
�  [j-1,j] contains pre-terminals
�  If [0,n] contains Start, the input is recognized

CKY Algorithm

Is this a parser?

CKY Parsing
�  Table fills:

�  Column-by-column

�  Left-to-right
�  Bottom-to-top

�  Why?

CKY Parsing
�  Table fills:

�  Column-by-column

�  Left-to-right
�  Bottom-to-top

�  Why?
�  Necessary info available (below and left)
�  Allows online sentence analysis

�  Works across input string as it arrives

CKY Table
�  Book the flight through Houston

Filling CKY cell

0 Book 1 the 2 flight 3 through 4 Houston 5
Book the Flight through Houston

NN, VB,
Nominal, VP, S
[0,1]

0 Book 1 the 2 flight 3 through 4 Houston 5
Book the Flight through Houston

NN, VB,
Nominal, VP, S
[0,1]

Det
[1,2]

0 Book 1 the 2 flight 3 throught 4 Houston 5
Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

Det
[1,2]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

Det
[1,2]

NN, Nominal
[2,3]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

Det
[1,2]

NP
[1,3]

NN, Nominal
[2,3]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

Det
[1,2]

NP
[1,3]

NN, Nominal
[2,3]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

Det
[1,2]

NP
[1,3]

NN, Nominal
[2,3]

Prep

[3,4]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

Det
[1,2]

NP
[1,3]

[1,4]

NN, Nominal
[2,3]

[2,4]

Prep

[3,4]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

Det
[1,2]

NP
[1,3]

[1,4]

NN, Nominal
[2,3]

[2,4]

Prep

[3,4]

NNP, NP
[4,5]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

Det
[1,2]

NP
[1,3]

[1,4]

NN, Nominal
[2,3]

[2,4]

Prep

[3,4]

PP

[3,5]

NNP, NP
[4,5]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

Det
[1,2]

NP
[1,3]

[1,4]

NN, Nominal
[2,3]

[2,4]

Nominal
[2,5]

Prep

[3,4]

PP

[3,5]

NNP, NP
[4,5]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

Det
[1,2]

NP
[1,3]

[1,4]

NP
[1,5]

NN, Nominal
[2,3]

[2,4]

Nominal
[2,5]

Prep

[3,4]

PP

[3,5]

NNP, NP
[4,5]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

S, VP, X2
[0,5]

Det
[1,2]

NP
[1,3]

[1,4]

NP
[1,5]

NN, Nominal
[2,3]

[2,4]

Nominal
[2,5]

Prep

[3,4]

PP

[3,5]

NNP, NP
[4,5]

From Recognition to Parsing
�  Limitations of current recognition algorithm:

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

�  Parsing solution:
�  All repeated versions of non-terminals

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

�  Parsing solution:
�  All repeated versions of non-terminals
�  Pair each non-terminal with pointers to cells

�  Backpointers

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

�  Parsing solution:
�  All repeated versions of non-terminals
�  Pair each non-terminal with pointers to cells

�  Backpointers

�  Last step: construct trees from back-pointers in [0,n]

Filling column 5

CKY Discussion
�  Running time:

O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string

�  Inner loop grows as square of # of non-terminals

�  Expressiveness:

O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string

�  Inner loop grows as square of # of non-terminals

�  Expressiveness:
�  As implemented, requires CNF

�  Weakly equivalent to original grammar

�  Doesn’t capture full original structure
�  Back-conversion?

O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string
�  Inner loop grows as square of # of non-terminals

�  Expressiveness:
�  As implemented, requires CNF

�  Weakly equivalent to original grammar
�  Doesn’t capture full original structure

�  Back-conversion?
�  Can do binarization, terminal conversion
�  Unit non-terminals require change in CKY

O(n3)

