CKY Parsing

Ling571
Deep Processing Approaches to NLP January 12, 2015

Roadmap

- Motivation:
- Inefficiencies of parsing-as-search
- Strategy: Dynamic Programming
- Chomsky Normal Form
- Weak and strong equivalence
- CKY parsing algorithm

Top-down parsing (DFS)

[^0]
Bottom-Up Search

Parsing Challenges

- Ambiguity
- Repeated substructure
- Recursion

Parsing Ambiguity

- Many sources of parse ambiguity
- Lexical ambiguity
- Book/N; Book/V

Parsing Ambiguity

- Many sources of parse ambiguity
- Lexical ambiguity
- Book/N; Book/V
- Structural ambiguity: Main types:
- Attachment ambiguity
- Constituent can attach in multiple places
- I shot an elephant in my pyjamas.

Parsing Ambiguity

- Many sources of parse ambiguity
- Lexical ambiguity
- Book/N; Book/V
- Structural ambiguity: Main types:
- Attachment ambiguity
- Constituent can attach in multiple places
- I shot an elephant in my pyjamas.
- Coordination ambiguity
- Different constituents can be conjoined
- Old men and women

Ambiguity

Speech and Language Processing
Jurafsky and Martin

Disambiguation

- Global ambiguity:
- Multiple complete alternative parses
- Need strategy to select correct one
- Approaches exploit other information

Disambiguation

- Global ambiguity:
- Multiple complete alternative parses
- Need strategy to select correct one
- Approaches exploit other information
- Statistical
- Some prepositional structs more likely to attach high/low
- Some phrases more likely, e.g., (old (men and women))

Disambiguation

- Global ambiguity:
- Multiple complete alternative parses
- Need strategy to select correct one
- Approaches exploit other information
- Statistical
- Some prepositional structs more likely to attach high/low
- Some phrases more likely, e.g., (old (men and women))
- Semantic

Disambiguation

- Global ambiguity:
- Multiple complete alternative parses
- Need strategy to select correct one
- Approaches exploit other information
- Statistical
- Some prepositional structs more likely to attach high/low
- Some phrases more likely, e.g., (old (men and women))
- Semantic
- Pragmatic
- E.g., elephants and pyjamas
- Alternatively, keep all

Disambiguation

- Global ambiguity:
- Multiple complete alternative parses
- Need strategy to select correct one
- Approaches exploit other information
- Statistical
- Some prepositional structs more likely to attach high/low
- Some phrases more likely, e.g., (old (men and women))
- Semantic
- Pragmatic
- E.g., elephants and pyjamas
- Alternatively, keep all
- Local ambiguity:
- Ambiguity in subtree, resolved globally

Repeated Work

- Top-down and bottom-up parsing both lead to repeated substructures
- Globally bad parses can construct good subtrees
- But overall parse will fail
- Require reconstruction on other branch
- No static backtracking strategy can avoid

Repeated Work

- Top-down and bottom-up parsing both lead to repeated substructures
- Globally bad parses can construct good subtrees
- But overall parse will fail
- Require reconstruction on other branch
- No static backtracking strategy can avoid
- Efficient parsing techniques require storage of shared substructure
- Typically with dynamic programming

Repeated Work

- Top-down and bottom-up parsing both lead to repeated substructures
- Globally bad parses can construct good subtrees
- But overall parse will fail
- Require reconstruction on other branch
- No static backtracking strategy can avoid
- Efficient parsing techniques require storage of shared substructure
- Typically with dynamic programming
- Example: a flight from Indianapolis to Houston on TWA

Shared Sub-Problems NP

 Noun
 $\stackrel{\mid}{\text { flight... }}$

Shared Suh-Prohlems NP

|
Noun from Indianapolis... flight

Shared Sub-Problems

Shared Sub-Problems

Recursion

- Many grammars have recursive rules
- E.g., S \rightarrow S Conj S
- In search approaches, recursion is problematic
- Can yield infinite searches
- Esp., top-down

Dynamic Programming

- Challenge: Repeated substructure \rightarrow Repeated work

Dynamic Programming

- Challenge: Repeated substructure \rightarrow Repeated work
- Insight:
- Global parse composed of parse substructures
- Can record parses of substructures

Dynamic Programming

- Challenge: Repeated substructure \rightarrow Repeated work
- Insight:
- Global parse composed of parse substructures
- Can record parses of substructures
- Dynamic programming avoids repeated work by tabulating solutions to subproblems
- Here, stores subtrees

Parsing w/Dynamic Programming

- Avoids repeated work
- Allows implementation of (relatively) efficient parsing algorithms
- Polynomial time in input length
- Typically cubic (n^{3}) or less

Parsing w/Dynamic Programming

- Avoids repeated work
- Allows implementation of (relatively) efficient parsing algorithms
- Polynomial time in input length
- Typically cubic (n^{3}) or less
- Several different implementations
- Cocke-Kasami-Younger (CKY) algorithm
- Earley algorithm
- Chart parsing

Chomsky Normal Form (CNF)

- CKY parsing requires grammars in CNF
- Chomsky Normal Form
- All productions of the form:
- A \rightarrow B C, or
- $\mathrm{A} \rightarrow \mathrm{a}$

Chomsky Normal Form (CNF)

- CKY parsing requires grammars in CNF
- Chomsky Normal Form
- All productions of the form:
- $A \rightarrow B C$, or
- $\mathrm{A} \rightarrow \mathrm{a}$
- However, most of our grammars are not of this form - E.g., $S \rightarrow$ Wh-NP Aux NP VP

Chomsky Normal Form (CNF)

- CKY parsing requires grammars in CNF
- Chomsky Normal Form
- All productions of the form:
- $A \rightarrow B C$, or
- $\mathrm{A} \rightarrow \mathrm{a}$
- However, most of our grammars are not of this form - E.g., $S \rightarrow$ Wh.NP Aux NP VP
- Need a general conversion procedure
- Any arbitrary grammar can be converted to CNF

CNF Conversion

- Three main conditions:

CNF Conversion

- Three main conditions:
- Hybrid rules:
- INF-VP \rightarrow to VP

CNF Conversion

- Three main conditions:
- Hybrid rules:
- INF-VP \rightarrow to VP
- Unit productions:
- $A \rightarrow B$

CNF Conversion

- Three main conditions:
- Hybrid rules:
- INF-VP \rightarrow to VP
- Unit productions:
- $A \rightarrow B$
- Long productions:
- A \rightarrow B C D

CNF Conversion

- Hybrid rule conversion:
- Replace all terminals with dummy non-terminals
- E.g., INF-VP \rightarrow to VP

CNF Conversion

- Hybrid rule conversion:
- Replace all terminals with dummy non-terminals
- E.g., INF-VP \rightarrow to VP
- INF.VP \rightarrow TO VP; TO \rightarrow to

CNF Conversion

- Hybrid rule conversion:
- Replace all terminals with dummy non-terminals
- E.g., INF-VP \rightarrow to VP
- INF.VP \rightarrow TO VP; TO \rightarrow to
- Unit productions:
- Rewrite RHS with RHS of all derivable non-unit productions
- If $A \stackrel{*}{\Rightarrow} B$ and $B \rightarrow \mathrm{w}$, then add $\mathrm{A} \rightarrow \mathrm{w}$

CNF Conversion

- Long productions:
- Introduce new non-terminals and spread over rules
- $S \rightarrow$ Aux NP VP

CNF Conversion

- Long productions:
- Introduce new non-terminals and spread over rules
- $S \rightarrow$ Aux NP VP
- $S \rightarrow$ X1 VP; X1 \rightarrow Aux NP

CNF Conversion

- Long productions:
- Introduce new non-terminals and spread over rules
- $S \rightarrow$ Aux NP VP
- $S \rightarrow$ X1 VP; X1 \rightarrow Aux NP
- For all non-conforming rules,
- Convert terminals to dummy non-terminals
- Convert unit productions
- Binarize all resulting rules

$\quad \mathscr{L}_{1}$ Grammar
$S \rightarrow N P$ VP
$S \rightarrow$ Aux $N P$ VP
$S \rightarrow V P$
NP \rightarrow Pronoun
NP \rightarrow Proper-Noun
NP \rightarrow Det Nominal
Nominal \rightarrow Noun
Nominal \rightarrow Nominal Noun
Nominal \rightarrow Nominal PP
$V P \rightarrow$ Verb
$V P \rightarrow$ Verb NP
$V P \rightarrow$ Verb NP PP
$V P \rightarrow$ Verb PP
$V P \rightarrow$ VP PP
$P P \rightarrow$ Preposition NP

\mathscr{L}_{1} Grammar	\mathscr{L}_{1} in CNF
$S \rightarrow N P V P$	$S \rightarrow N P V P$
$S \rightarrow A u x N P V P$	
$S \rightarrow V P$	
$N P \rightarrow$ Pronoun	
$N P \rightarrow$ Proper-Noun	
$N P \rightarrow$ Det Nominal	
Nominal \rightarrow Noun	
Nominal \rightarrow Nominal Noun	
Nominal \rightarrow Nominal PP	
$V P \rightarrow$ Verb	
$V P \rightarrow$ Verb $N P$	
$V P \rightarrow V e r b N P P P$	
$V P \rightarrow$ Verb $P P$	
$V P \rightarrow V P P P$	
$P P \rightarrow$ Preposition $N P$	

\mathscr{L}_{1} Grammar	\mathscr{L}_{1} in CNF
$S \rightarrow N P V P$	$S \rightarrow N P V P$
$S \rightarrow$ Aux NP VP	$S \rightarrow X 1 V P$
$S \rightarrow V P$	
$N P \rightarrow$ Pronoun	
$N P \rightarrow$ Proper-Noun	
$N P \rightarrow$ Det Nominal	
Nominal \rightarrow Noun	
Nominal \rightarrow Nominal Noun	
Nominal \rightarrow Nominal PP	
$V P \rightarrow$ Verb	
$V P \rightarrow$ Verb NP	
$V P \rightarrow$ Verb NP PP	
$V P \rightarrow$ Verb PP	
$V P \rightarrow$ VP PP	
$P P \rightarrow$ Preposition NP	

\mathscr{L}_{1} Grammar	\mathscr{L}_{1} in CNF
$S \rightarrow N P V P$	$S \rightarrow N P V P$
$S \rightarrow$ Aux NP VP	$S \rightarrow X 1 V P$
$S \rightarrow V P$	$X 1 \rightarrow A u x N P$
$N P \rightarrow$ book \mid include \mid prefer	
$N P \rightarrow$ Propoun	
$N P \rightarrow$ Det Nominal	
Nominal \rightarrow Noun	
Nominal \rightarrow Nominal Noun	
Nominal \rightarrow Nominal PP	
$V P \rightarrow$ Verb	
$V P \rightarrow$ Verb NP	
$V P \rightarrow$ Verb NP PP	
$V P \rightarrow$ Verb PP	
$V P \rightarrow$ VP PP	
$P P \rightarrow$ Preposition NP	

\mathscr{L}_{1} Grammar	\mathscr{L}_{1} in CNF
$S \rightarrow N P V P$	$S \rightarrow N P V P$
$S \rightarrow$ Aux NP VP	$S \rightarrow X 1 V P$
	$X 1 \rightarrow$ Aux NP
$S \rightarrow V P$	$S \rightarrow$ book \mid include \mid prefer
	$S \rightarrow$ Verb NP
	$S \rightarrow$ N2 PP
	$S \rightarrow$ Verb $P P$
	$S \rightarrow V P P P$
$N P \rightarrow$ Pronoun	
$N P \rightarrow$ Proper-Noun	
$N P \rightarrow$ Det Nominal	
Nominal \rightarrow Noun	
Nominal \rightarrow Nominal Noun	
Nominal \rightarrow Nominal PP	
$V P \rightarrow$ Verb	
$V P \rightarrow$ Verb NP	
$V P \rightarrow$ Verb NP PP	
$V P \rightarrow$ Verb PP	
$V P \rightarrow$ VP PP	
$P P \rightarrow$ Preposition NP	

\mathscr{L}_{1} Grammar	\mathscr{L}_{1} in CNF	
$S \rightarrow N P V P$	$S \rightarrow N P V P$	
$S \rightarrow A u x N P V P$	$S \rightarrow X 1 V P$	
	X1 \rightarrow Aux NP	
$S \rightarrow V P$	$S \rightarrow$ book \| include	prefer
	$S \rightarrow \operatorname{Verb}$ NP	
	$S \rightarrow X 2 P P$	
	$S \rightarrow V \mathrm{Verb} P \mathrm{P}$	
	$S \rightarrow V P P P$	
$N P \rightarrow$ Pronoun	$N P \rightarrow I \mid$ she \mid me	
$N P \rightarrow$ Proper-Noun	$N P \rightarrow$ TWA \mid Houston	
$N P \rightarrow$ Det Nominal	$N P \rightarrow$ Det Nominal	
Nominal \rightarrow Noun	Nominal \rightarrow book \mid flight \mid meal \mid money	
Nominal \rightarrow Nominal Noun	Nominal \rightarrow Nominal Noun	
Nominal \rightarrow Nominal PP	Nominal \rightarrow Nominal PP	
$V P \rightarrow$ Verb	$V P \rightarrow$ book \| include	prefer
$V P \rightarrow$ Verb $N P$	$V P \rightarrow$ Verb $N P$	
$V P \rightarrow \operatorname{Verb} N P P P$	$V P \rightarrow X 2 P P$	
	$X 2 \rightarrow \operatorname{Verb} N P$	
$V P \rightarrow$ Verb $P P$	$V P \rightarrow V \operatorname{Verb} P P$	
$V P \rightarrow V P P P$	$V P \rightarrow V P P P$	
$P P \rightarrow$ Preposition NP	$P P \rightarrow$ Preposition $N P$	

CKY Parsing

- Cocke-Kasami-Younger parsing algorithm:
- (Relatively) efficient bottom-up parsing algorithm based on tabulating substring parses to avoid repeated work

CKY Parsing

- Cocke-Kasami-Younger parsing algorithm:
- (Relatively) efficient bottom-up parsing algorithm based on tabulating substring parses to avoid repeated work
- Approach:
- Use a CNF grammar
- Build an $(n+1) \times(n+1)$ matrix to store subtrees
- Upper triangular portion
- Incrementally build parse spanning whole input string

Dynamic Programming in CKY

- Key idea:
- For a parse spanning substring [i,j], there exists some k such there are parses spanning $[i, k]$ and $[k, j]$
- We can construct parses for whole sentence by building up from these stored partial parses

Dynamic Programming in CKY

- Key idea:
- For a parse spanning substring [i,j], there exists some k such there are parses spanning $[i, k]$ and $[k, j]$
- We can construct parses for whole sentence by building up from these stored partial parses
- So,
- To have a rule A \rightarrow B C in [i,j],
- We must have B in $[i, k]$ and C in $[k, j]$, for some $i<k<j$
- CNF grammar forces this for all $j>i+1$

CKY

- Given an input string S of length n,
- Build table $(n+1) \times(n+1)$
- Indexes correspond to inter-word positions
- E.g., 0 Book 1 That 2 Flight 3

CKY

- Given an input string S of length n,
- Build table $(n+1) \times(n+1)$
- Indexes correspond to inter-word positions
- E.g., 0 Book 1 That 2 Flight 3
- Cells [i,j] contain sets of non-terminals of ALL constituents spanning i,j
- $[j-1, j]$ contains pre-terminals
- If $[0, n]$ contains Start, the input is recognized

CKY Algorithm

function CKY-PARSE(words, grammar) returns table
for $j \leftarrow$ from 1 to LENGTH(words) do
table $[j-1, j] \leftarrow\{A \mid A \rightarrow$ words $[j] \in$ grammar $\}$
for $i \leftarrow$ from $j-2$ downto 0 do

$$
\begin{aligned}
& \text { for } k \leftarrow i+1 \text { to } j-1 \text { do } \\
& \text { table }[i, j] \leftarrow \text { table }[i, j] \cup \\
& \qquad\{A \mid A \rightarrow B C \in \text { grammar, }, \\
& B \in \text { table }[i, k], \\
& C \in \text { table }[k, j]\}
\end{aligned}
$$

Is this a parser?

CKY Parsing

- Table fills:
- Column-by-column
- Left-to-right
- Bottom-to-top
- Why?

CKY Parsing

- Table fills:
- Column-by-column
- Left-to-right
- Bottom-to-top
- Why?
- Necessary info available (below and left)
- Allows online sentence analysis
- Works across input string as it arrives

CKY Table

- Book the flight through Houston

Filling CKY cell

0 Book 1 the 2 flight 3 through 4 Houston 5

Book	the	Flight	through	Houston
NN, VB, Nominal, VP, S $[0,1]$				

0 Book 1 the 2 flight 3 through 4 Houston 5

Book	the	Flight	through	Houston
NN, VB, Nominal, VP, S $[0,1]$				

0 Book 1 the 2 flight 3 throught 4 Houston 5

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S $[0,1]$	[0,2]			
	Det $[1,2]$			

0 Book 1 the 2 flight 3 through 4 Houston 5
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Book } & \text { the } & \text { Flight } & \text { through } & \text { Houston } \\ \hline \begin{array}{l}\text { NN, VB, } \\ \text { Nominal, VP, S } \\ {[0,1]}\end{array} & & & & \\ \hline & {[0,2]}\end{array}\right)$

0 Book 1 the 2 flight 3 through 4 Houston 5
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Book } & \text { the } & \text { Flight } & \text { through } & \text { Houston } \\ \hline \begin{array}{l}\text { NN, VB, } \\ \text { Nominal, VP, S } \\ {[0,1]}\end{array} & & & & \\ \hline & {[0,2]}\end{array}\right)$

0 Book 1 the 2 flight 3 through 4 Houston 5

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S $[0,1]$		S, VP, X2		
	$[0,2]$	$[0,3]$		
	Det $[1,2]$	NP $[1,3]$		
			NN, Nominal $[2,3]$	

0 Book 1 the 2 flight 3 through 4 Houston 5

Book	the	Flight	Through	Houston
NN, VB,		S, VP, X2		
	[0,2]	[0,3]		
	$\begin{aligned} & \text { Det } \\ & {[1,2]} \end{aligned}$	$\begin{aligned} & \text { NP } \\ & {[1,3]} \end{aligned}$		
		NN, Nominal [2,3]		
			$\begin{aligned} & \text { Prep } \\ & {[3,4]} \end{aligned}$	

0 Book 1 the 2 flight 3 through 4 Houston 5

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S $[0,1]$		S, VP, X2		
	$[0,2]$	$[0,3]$	$[0,4]$	
	Det	NP		
$[1,2]$		NN, Nominal $[2,3]$	$[2,4]$	

0 Book 1 the 2 flight 3 through 4 Houston 5

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S $[0,1]$		S, VP, X2		
	$[0,2]$		[0,4]	
	$\begin{aligned} & \text { Det } \\ & {[1,2]} \end{aligned}$	$\begin{aligned} & N P \\ & {[1,3]} \end{aligned}$	[1,4]	
		NN, Nominal [2,3]	[2,4]	
			$\begin{aligned} & \text { Prep } \\ & {[3,4]} \end{aligned}$	
				NNP, NP [4,5]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S $[0,1]$	[0,2]	$\begin{aligned} & \mathrm{S}, \mathrm{VP}, \mathrm{X} 2 \\ & {[0,3]} \end{aligned}$	[0,4]	
	$\begin{aligned} & \text { Det } \\ & {[1,2]} \end{aligned}$	$\begin{aligned} & N P \\ & {[1,3]} \end{aligned}$	[1,4]	
		NN, Nominal $[2,3]$	[2,4]	
			$\begin{aligned} & \text { Prep } \\ & {[3,4]} \end{aligned}$	$\begin{aligned} & \text { PP } \\ & {[3,5]} \end{aligned}$
				NNP, NP [4,5]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S $[0,1]$		S, VP, X2		
	$[0,2]$	$[0,3]$	$[0,4]$	
	Det			
$[1,2]$	NP	$[1,3]$	$[1,4]$	

0 Book 1 the 2 flight 3 through 4 Houston 5

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S $[0,1]$		S, VP, X2		
	$[0,2]$	$[0,3]$	$[0,4]$	
	Det	NP		NP
	$[1,2]$	$[1,3]$	$[1,4]$	$[1,5]$
				NN, Nominal
$[2,3]$	$[2,4]$	Nominal 		
			Prep	PP

0 Book 1 the 2 flight 3 through 4 Houston 5

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S [0,1]	[0,2]	$\begin{aligned} & \mathrm{S}, \mathrm{VP}, \mathrm{X} 2 \\ & {[0,3]} \end{aligned}$	[0,4]	$\begin{aligned} & \mathrm{S}, \mathrm{VP}, \mathrm{X} 2 \\ & {[0,5]} \end{aligned}$
	$\begin{aligned} & \text { Det } \\ & {[1,2]} \end{aligned}$	$\begin{aligned} & N P \\ & {[1,3]} \end{aligned}$	[1,4]	$\begin{aligned} & N P \\ & {[1,5]} \end{aligned}$
		NN, Nominal $[2,3]$	[2,4]	Nominal $[2,5]$
			$\begin{aligned} & \text { Prep } \\ & {[3,4]} \end{aligned}$	$\begin{aligned} & \text { PP } \\ & {[3,5]} \end{aligned}$
				NNP, NP $[4,5]$

From Recognition to Parsing

- Limitations of current recognition algorithm:

From Recognition to Parsing

- Limitations of current recognition algorithm:
- Only stores non-terminals in cell
- Not rules or cells corresponding to RHS

From Recognition to Parsing

- Limitations of current recognition algorithm:
- Only stores non-terminals in cell
- Not rules or cells corresponding to RHS
- Stores SETS of non-terminals
- Can't store multiple rules with same LHS

From Recognition to Parsing

- Limitations of current recognition algorithm:
- Only stores non-terminals in cell
- Not rules or cells corresponding to RHS
- Stores SETS of non-terminals
- Can't store multiple rules with same LHS
- Parsing solution:
- All repeated versions of non-terminals

From Recognition to Parsing

- Limitations of current recognition algorithm:
- Only stores non-terminals in cell
- Not rules or cells corresponding to RHS
- Stores SETS of non-terminals
- Can't store multiple rules with same LHS
- Parsing solution:
- All repeated versions of non-terminals
- Pair each non-terminal with pointers to cells
- Backpointers

From Recognition to Parsing

- Limitations of current recognition algorithm:
- Only stores non-terminals in cell
- Not rules or cells corresponding to RHS
- Stores SETS of non-terminals
- Can't store multiple rules with same LHS
- Parsing solution:
- All repeated versions of non-terminals
- Pair each non-terminal with pointers to cells
- Backpointers
- Last step: construct trees from back-pointers in [0, n]

Filling column 5

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun [0,1]	[0,2]	$\begin{aligned} & S, V P, \times 2 \\ & {[0,3]} \end{aligned}$	[0,4]	[0,5]
	Det $[1,2]$	$\begin{array}{\|c} \text { NP } \\ {[1,3]} \\ \hline \end{array}$	$[1,4]$	[1,5]
		Nominal, Noun $[2,3]$	[2,4]	Nominal $[2,5]$
			Prep $[3,4]$	[3,5]
				NP, ProperNoun [4,5]

Book	the	flight	through	Houston
S, VP, Verb Nominal, Noun $[0,1]$	$[0,2]$		[0,4]	$\begin{array}{r} -S_{1}, V P, \times 2 \\ -S_{2}, V P \\ \downarrow \\ \downarrow \end{array}$
	Det $[1,2]$	NP $[1,3]$	[1,4]	$\begin{aligned} & \text { NP } \\ & {[1,5]} \end{aligned}$
		Nominal, Noun $[2,3]$	[2,4]	
			Prep $[3,4]$	$[3,5]$
				NP, ProperNoun $[4,5]$

CKY Discussion

- Running time:

$$
O\left(n^{3}\right)
$$

CKY Discussion

- Running time:
- $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$ where n is the length of the input string

CKY Discussion

- Running time:
- $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$ where n is the length of the input string
- Inner loop grows as square of \# of non-terminals
- Expressiveness:

CKY Discussion

- Running time:
- $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$ where n is the length of the input string
- Inner loop grows as square of \# of non-terminals
- Expressiveness:
- As implemented, requires CNF
- Weakly equivalent to original grammar
- Doesn't capture full original structure
- Back-conversion?

CKY Discussion

- Running time:
- $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$ where n is the length of the input string
- Inner loop grows as square of \# of non-terminals
- Expressiveness:
- As implemented, requires CNF
- Weakly equivalent to original grammar
- Doesn't capture full original structure
- Back-conversion?
- Can do binarization, terminal conversion
- Unit non-terminals require change in CKY

[^0]: Jurafsky and Martin

