CKY & Earley Parsing

Ling 571
Deep Processing Techniques for NLP
January 14, 2015

Roadmap

e CKY Parsing:
® Recognizer - Parser

® Earley parsing
® Motivation:
e CKY Strengths and Limitations
® EFarley model:
e Efficient parsing with arbitrary grammars

® Procedures:
® Predictor, Scanner , Completer

O Book 1 the 2 flight 3 through 4 Houston 5

NN, VB, S, VP, X2
Nominal, VP S S, VP X2
[0,1] [0,2] [0,3] [0,4] [0,5]
Det NP NP
[1,2] [1,3] [1,4] [1,5]
NN, Nominal Nominal
[2,3] [2,4] [2,5]
Prep PP
[3,4] [3,5]
NNP NP

[4,5]

From Recognition to Parsing

® Limitations of current recognition algorithm:

From Recognition to Parsing

® Limitations of current recognition algorithm:
® Only stores non-terminals in cell
® Not rules or cells corresponding to RHS

From Recognition to Parsing

® Limitations of current recognition algorithm:
® Only stores non-terminals in cell
® Not rules or cells corresponding to RHS
® Stores SETS of non-terminals
e Can’t store multiple rules with same LHS

From Recognition to Parsing

® Limitations of current recognition algorithm:
® Only stores non-terminals in cell
® Not rules or cells corresponding to RHS

® Stores SETS of non-terminals
e Can’t store multiple rules with same LHS

® Parsing solution:
® All repeated versions of non-terminals

From Recognition to Parsing

® Limitations of current recognition algorithm:
® Only stores non-terminals in cell
® Not rules or cells corresponding to RHS

® Stores SETS of non-terminals
e Can’t store multiple rules with same LHS

® Parsing solution:
® All repeated versions of non-terminals
® Pair each non-terminal with pointers to cells
® Backpointers

el —

From Recognition to Parsing

® Limitations of current recognition algorithm:
® Only stores non-terminals in cell
® Not rules or cells corresponding to RHS
e Stores SETS of non-terminals
e Can’t store multiple rules with same LHS

® Parsing solution:
® All repeated versions of non-terminals
® Pair each non-terminal with pointers to cells
® Backpointers
® | ast step: construct trees from back-pointers in [O,n]

Filling column 5

Book the flight through Houston

Book the flight through Houston
S, VP, Verb| S, VP, X2
Nominal,
Noun
[0,1] [0,2] [O0,3] [0,4] [0,5]
Det NP NP
[1,2] [1,3] [1.,4] [1,5]
Nominal,
Noun
2,3 [2.,4] [2.5]
Prep <«<—— PP

Book the flight through Houston

Book the flight through Houston
S, VP, VVerb), S, VP, X2
Nominal,
Noun
[O0,1] [0,2] [0,3] [0.4] [0,5]
Det -= P NP
[1,2] [1,3] [1.4] []
Nominal, Nominal
Noun
|2,3| [2.4] [2,.5]
Prep PP
[3.4] [3,5]
NP,
Proper-
Noun

I4,5|

Book the flight through Houston
S, VP, VVerbj= S1 VP, X2
Nominal, S,
Noun VP,=< S,, VP
X2 = 83
[O0,1] [0,2] [0,3] [0.,4]
|1 Det NP NP
[1.2] [1,3] [1.4] [1.5]
Nominal, Nominal
Noun
2,3 [2.4] [2.5]
Y
Prep PP
[3.41] [3,5]
NP,
Proper-
Noun

[4.5]

CKY Discussion

® Running time:
oO(n?)

—

CKY Discussion

® Running time:
e O(n>) where n is the length of the input string

CKY Discussion

® Running time:
e O(n>) where n is the length of the input string
® |nner loop grows as square of # of non-terminals

® Expressiveness:

CKY Discussion

® Running time:
e O(n>) where n is the length of the input string
® |nner loop grows as square of # of non-terminals

® Expressiveness:

® As implemented, requires CNF
® Weakly equivalent to original grammar

® Doesn’t capture full original structure
® Back-conversion?

CKY Discussion

® Running time:
® o(n?) Where nis the length of the input string
® |nner loop grows as square of # of non-terminals

® Expressiveness:

® As implemented, requires CNF
® Weakly equivalent to original grammar
® Doesn’t capture full original structure
® Back-conversion?

® Can do binarization, terminal conversion
® Unit non-terminals require change in CKY

Parsing Efficiently

e With arbitrary grammars
® Earley algorithm
® Top-down search
® Dynamic programming
® Tabulated partial solutions
® Some bottom-up constraints

Earley Parsing

® Avoid repeated work/recursion problem
® Dynamic programming
® Store partial parses in “chart”
e Compactly encodes ambiguity

*O(N>)

Earley Parsing

® Avoid repeated work/recursion problem
® Dynamic programming
® Store partial parses in “chart”
e Compactly encodes ambiguity

*O(N>)

® Chart entries:
® Subtree for a single grammar rule
® Progress in completing subtree
® Position of subtree wrt input

" e

Earley Algorithm

® First, left-to-right pass fills out a chart
with N+1 states

® Think of chart entries as sitting between
words in the input string, keeping track of
states of the parse at these positions

® For each word position, chart contains set of
states representing all partial parse trees
generated to date. E.g. chart[O] contains all
partial parse trees generated at the beginning
of the sentence

Chart Entries

Represent three types of constituents:
® predicted constituents
® in-progress constituents

® completed constituents

Parse Progress
® Represented by Dotted Rules

® Position of < indicates type of constituent

* , Book ; that , flight 5
e S VP [0,0] (predicted)

Parse Progress
® Represented by Dotted Rules

® Position of < indicates type of constituent

* , Book ; that , flight 5
e S VP [0,0] (predicted)
® NP - Det« Nom, [1,2] (in progress)

Parse Progress
® Represented by Dotted Rules

® Position of < indicates type of constituent

* , Book ; that , flight 5
e S VP [0,0] (predicted)
® NP - Det« Nom, [1,2] (in progress)
® VP .V NP ¢, [0,3] (completed)

Parse Progress
® Represented by Dotted Rules

® Position of < indicates type of constituent

* , Book ; that , flight 5
e S VP [0,0] (predicted)
® NP - Det« Nom, [1,2] (in progress)
® VP .V NP ¢, [0,3] (completed)

® [x,y] tells us what portion of the input is
spanned so far by this rule

Parse Progress
Represented by Dotted Rules

Position of e« indicates type of constituent

o Book ; that , flight
e S VP [0,0] (predicted)
® NP - Det e« Nom, [1,2] (in progress)
e VP _V NP« [0,3] (completed)

[X,y] tells us what portion of the input is spanned
so far by this rule

Each State s;:
<dotted rule>, [<back pointer>,<current position>]

o Book ; that , flight 5

S — VP [0,0]
® First O means S constituent begins at the
start of input
® Second O means the dot here, too

® S0, this is a top-down prediction

o Book ; that , flight 5

S — VP [0,0]

® First O means S constituent begins at the
start of input

® Second O means the dot here too
® S0, this is a top-down prediction

NP — Det « Nom, [1,2]

® the NP begins at position 1

® the dot is at position 2

® s, Det has been successfully parsed
redicted next |

o Book ; that , flight 5
(continued)

VP — V NP ¢, [0,3]
® Successful VP parse of entire input

VP ==V NP.

S->.VP

NP == Dat . Nominal

Book ‘//:;T\Hb flight

Successful Parse

® Final answer found by looking at last entry in chart

Successful Parse

® Final answer found by looking at last entry in chart

® |f entry resembles S — a ¢ [O,N] then input parsed
successfully

e Chart will also contain record of all possible parses
of Input string, given the grammar

Parsing Procedure for the
Earley Algorithm

® Move through each set of states in order,
applying one of three operators to each
state:
e predictor: add predictions to the chart

® scanner: read input and add corresponding
state to chart

e completer: move dot to right when new
constituent found

Parsing Procedure for the
Earley Algorithm

® Move through each set of states in order,
applying one of three operators to each
state:
e predictor: add predictions to the chart

® scanner: read input and add corresponding
state to chart

e completer: move dot to right when new
constituent found

® Results (new states) added to current or
. next set of states in chart _ “

Parsing Procedure for the
Earley Algorithm

®* Move through each set of states in order,
applying one of three operators to each

state:
e predictor: add predictions to the chart

® scanner: read input and add corresponding state
to chart

e completer: move dot to right when new
constituent found

® Results (new states) added to current or next
set of states in chart

® No backtracking and no states removed:
mplete history of -

States and State Sets

* Dotted Rule s, represented as
<dotted rule>, [<back pointer>, <current position>]

° State Set S, to be a collection of states s; with the same
<current position>.

Earley Algorithm from Book

function EARLEY-PARSE(words, grammar) retuarns chart

ENQUEUE((y — e S, [0,0]),chart[0])
for i — from O to LENGTH(words) do
for each state in chart[i] do
if INCOMPLETE?(state) and
NEXT-CAT(state) 1s not a part of speech then
PREDICTOR(state)
elseif INCOMPLETE?(state) and
NEXT-CAT(state) 1s a part of speech then
SCANNERC(state)
else
COMPLETER(state)
end
end

return(chart)

Earley Algorithm from Book

procedure PREDICTOR((A — a e B f3, [i, j]))
for each (B — y) in GRAMMAR-RULES-FOR(B, grammar) do
ENQUEUE((B — e 7. [j. J]), chart[j])
end

procedure SCANNER((A — a e B3, [i,j])
if B C PARTS-OF-SPEECH(word[;]) then
ENQUEUE((B — word|j], [j,j+1]),chart[j+1])

procedure COMPLETER((B — 7 e, [j,k]))
for each (A — a e B f, [i,j]) in chart[j] do
ENQUEUE((A — «a B e 3, [i,k]),chart[k])

end

3 Main Sub-Routines of
Earley Algorithm

* Predictor: Adds predictions into the chart.

 Completer: Moves the dot to the right
when new constituents are found.

* Scanner: Reads the input words and enters
states representing those words into the
chart.

Predictor

® |ntuition: create new state for top-down
prediction of new phrase.

Predictor

® |ntuition: create new state for top-down
prediction of new phrase.

* Applied when non part-of-speech non-
terminals are to the right of adot: S — o

VP [0,0]

Predictor

® |ntuition: create new state for top-down
prediction of new phrase.

* Applied when non part-of-speech non-
terminals are to the right of adot: S — o

VP [0,0]

® Adds new states to current chart

® (One new state for each expansion of the non-
terminal in the grammar
VP — «V [0,0]
VP — <V NP [0,0]

Predictor

® [ntuition: create new state for top-down
prediction of new phrase.

® Applied when non part-of-speech non-
terminals are to the right of a dot: S —

VP [0,0]

® Adds new states to current chart

® One new state for each expansion of the non-
terminal in the grammar
VP — « V [0,0]
VP — <V NP [0,0]

Formally:

—

a3

Chart[O]

SO y — oS [0,0] Dummy start state

=

1/13/15

Jurafsky and Martin

Chart[O]

SO Yy — oS 0,0] Dummy start state
S1 S — e«NPVP 0,0] Predictor
S2 S — e Aux NP VP 0,0] Predictor
S3 S — o VP 0,0] Predictor

J—1/13/15

Jurafsky and Martin

Chart[O]

SO Yy — oS 0,0] Dummy start state
S1 S — eNPVP 0,0] Predictor
S2 S — e Aux NP VP 0,0] Predictor
S3 S — o VP 0,0] Predictor
S4 NP — e Pronoun 0,0] Predictor
S5 NP — e Proper-Noun 0,0] Predictor
S6 NP — e Det Nominal 0,0] Predictor

Jurafsky and Martin w 1/13/15

Chart[O]

SO Yy — oS 0,0] Dummy start state
S1 S — eNPVP 0,0] Predictor
S2 S — e Aux NP VP 0,0] Predictor
S3 S — o VP 0,0] Predictor
S4 NP — e Pronoun 0,0] Predictor
S5 NP — e Proper-Noun 0,0] Predictor
S6 NP — e Det Nominal 0,0] Predictor
S7 VP — e Verb 0,0] Predictor
S8 VP — e Verb NP 0,0] Predictor
S9 VP — e Verb NP PP 0,0] Predictor
S10 VP — e Verb PP 0,0] Predictor
S11 VP — e VP PP 0,0] Predictor

1713715

Jurafsky and Martin

Scanner

® |ntuition: Create new states for rules
matching part of speech of next word.

Scanner

® |ntuition: Create new states for rules
matching part of speech of next word.

® Applicable when part of speech is to the
right of a dot: VP — « V NP [0,0] ‘Book...’

Scanner

® |ntuition: Create new states for rules
matching part of speech of next word.

® Applicable when part of speech is to the
right of a dot: VP — « V NP [0,0] ‘Book...’

® [ooks at current word In Iinput

® |[f match, adds state(s) to next chart
V = Book ¢[0,1]

Scanner

® |ntuition: Create new states for rules matching
part of speech of next word.

o A}pplicable when part of speech is to the right
of a dot: VP — «V NP [0,0] "Book...

® [ooks at current word in input

® |f match, adds state(s) to next chart
V > Book ¢[0,1]

® Formally: . . .
A—o ¢ BB, [i,j], Bin POS(wordsl[j])

S
e S . .. B—words[j]e, [j,j+1]

Completer

® |ntuition: parser has finished a new
phrase, so must find and advance all
states that were waiting for this

Completer

® |ntuition: parser has finished a new
phrase, so must find and advance all
states that were waiting for this

* Applied when dot has reached right end
of rule

NP — Det Nom «[1,3]

Completer

Intuition: parser has finished a new phrase, so
must find and advance all states that were
waiting for this

Applied when dot has reached right end of rule
NP — Det Nom ¢ [1,3]

Find all states w/dot at 1 and expecting an NP:
e VP —Ve+NPJO,1]

Adds new (completed) state(s) to current chart :
e VP — VNP-[0,3]

Completer

Intuition: parser has finished a new phrase, so must
find and advance all states that were waiting for this

Applied when dot has reached right end of rule
NP — Det Nom «[1,3]

Find all states w/dot at 1 and expecting an NP:
e VP —Ve+NP[O,1]

Adds new (completed) state(s) to current chart :
e VP —VNP-[0,3]

Formally: S;.: B—> & -, [],K]
S:A—=aB - B, [ik], -
where: S:A—a - BB, I[ij]

. ———

ey

Chart[O]

SO Yy — oS 0,0] Dummy start state
S1 S — eNPVP 0,0] Predictor
S2 S — e Aux NP VP 0,0] Predictor
S3 S — o VP 0,0] Predictor
S4 NP — e Pronoun 0,0] Predictor
S5 NP — e Proper-Noun 0,0] Predictor
S6 NP — e Det Nominal 0,0] Predictor
S7 VP — e Verb 0,0] Predictor
S8 VP — e Verb NP 0,0] Predictor
S9 VP — e Verb NP PP 0,0] Predictor
S10 VP — e Verb PP 0,0] Predictor
S11 VP — e VP PP 0,0] Predictor

1713715

Jurafsky and Martin

Chart[1]

Speech and Language Processing -
Jurafsky and Martin 1/13/15

Chart[1]

S12 Verb — book e [0,1] Scanner |

\‘“Sp and Language Processing -
Jurafsky and Martin el 60

Chart[1]

S12 Verb — book e 0,1] Scanner
S13 VP — Verb e 0,1] Completer
S14 VP — Verb ¢ NP 0,1] Completer
S15 VP — Verb e NP PP 0,1 Completer
S16 VP — Verb e PP 0,1] Completer

Jurafsky and Martin s - el 6 1

Chart[1]

S12 Verb — book e 0,1] Scanner
S13 VP — Verb e 0,1] Completer
S14 VP — Verb ¢ NP 0,1] Completer
S15 VP — Verb e NP PP 0,1] Completer
S16 VP — Verb e PP 0,1] Completer
S17 S — VPe 0,1] Completer
S18 VP — VP e PP 0,1] Completer

Jurafsky and Martin - el 6 2

Chart[1]

S12 Verb — book e 0,1] Scanner
S13 VP — Verb e 0,1] Completer
S14 VP — Verb ¢ NP 0,1] Completer
S15 VP — Verb ¢ NP PP 0,1] Completer
S16 VP — Verb e PP 0,1] Completer
S17 S — VPe 0,1] Completer
S18 VP — VP e PP 0,1] Completer
S19 NP — e Pronoun 1,1] Predictor
S20 NP — e Proper-Noun 1,17 Predictor
S21 NP — e Det Nominal 1,1] Predictor
S22 PP — e Prep NP 1,1] Predictor |

Jurafsky and Martin — Srp—— 1/13/15 6 3

Prediction of Next Rule

® When VP — V ¢ |s itself processed by the
Completer, S — VP ¢ is added to Chart[1]

since VP is a left corner of S

e Last few rules in Chart[1] are added by
Predictor when VP — V « NP is processed

® And so on....

Charts[2] and [3]

Charts|[2] and [3]

S23 Det — that e [1,2] Scanner

Charts|[2] and [3]

S23 Det — that e [1,2] Scanner
S24 NP — Det e Nominal [1,2] Completer

1713715

Jurafsky and Martin

Charts|[2] and [3]

S23 Det — that e 1,2] Scanner
S24 NP — Det ¢ Nominal 1,2] Completer
S25 Nominal — e Noun 2,2] Predictor
S26 Nominal — e Nominal Noun [2,2] Predictor
S27 Nominal — e Nominal PP [2,2] Predictor

1713715

Jurafsky and Martin

Charts|[2] and [3]

S23 Det — that e 1,2] Scanner
S24 NP — Det ¢ Nominal 1,2] Completer
S25 Nominal — e Noun 2,2] Predictor
S26 Nominal — e Nominal Noun [2,2] Predictor
S27 Nominal — e Nominal PP [2,2] Predictor
S28 Noun — flight e 2,3] Scanner

1713715

Jurafsky and Martin

Charts|[2] and [3]

S23 Det — that e [1,2] Scanner
S24 NP — Det ¢ Nominal [1,2] Completer
S25 Nominal — e Noun [2,2] Predictor
S26 Nominal — e Nominal Noun [2,2] Predictor
S27 Nominal — e Nominal PP [2,2] Predictor
S28 Noun — flight e [2,3] Scanner
S29 Nominal — Noun e [2,3] Completer
S30 NP — Det Nominal e 1,3] Completer
S31 Nominal — Nominal ¢ Noun [2,3] Completer
S32 Nominal — Nominal ¢ PP [2,3] Completer
S33 VP — Verb NP e 0,3] Completer
S34 VP — Verb NP e« PP 0,3] Completer
S35 PP — e Prep NP 3,3] Predictor
- S36 S — VPe 0,3] Completer |

1713715

Jurafsky and Martin

How do we retrieve the
parses at the end?

* Augment the Completer to add pointers to prior
states it advances as a field in the current state

® j.e. what state did we advance here?

® Read the pointers back from the final state

e What about ambiguity?

e What about ambiguity?

e CKY/Earley can represent it

e What about ambiguity?

e CKY/Earley can represent it

® Can’t resolve it

