
CKY & Earley Parsing

Ling 571
Deep Processing Techniques for NLP

January 14, 2015

Roadmap
�  CKY Parsing:

�  Recognizer à Parser

�  Earley parsing
�  Motivation:

�  CKY Strengths and Limitations

�  Earley model:
�  Efficient parsing with arbitrary grammars

�  Procedures:
�  Predictor, Scanner , Completer

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

S, VP, X2
[0,5]

Det
[1,2]

NP
[1,3]

[1,4]

NP
[1,5]

NN, Nominal
[2,3]

[2,4]

Nominal
[2,5]

Prep

[3,4]

PP

[3,5]

NNP, NP
[4,5]

From Recognition to Parsing
�  Limitations of current recognition algorithm:

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

�  Parsing solution:
�  All repeated versions of non-terminals

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

�  Parsing solution:
�  All repeated versions of non-terminals
�  Pair each non-terminal with pointers to cells

�  Backpointers

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

�  Parsing solution:
�  All repeated versions of non-terminals
�  Pair each non-terminal with pointers to cells

�  Backpointers

�  Last step: construct trees from back-pointers in [0,n]

Filling column 5

CKY Discussion
�  Running time:

O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string

�  Inner loop grows as square of # of non-terminals

�  Expressiveness:

O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string

�  Inner loop grows as square of # of non-terminals

�  Expressiveness:
�  As implemented, requires CNF

�  Weakly equivalent to original grammar

�  Doesn’t capture full original structure
�  Back-conversion?

O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string
�  Inner loop grows as square of # of non-terminals

�  Expressiveness:
�  As implemented, requires CNF

�  Weakly equivalent to original grammar
�  Doesn’t capture full original structure

�  Back-conversion?
�  Can do binarization, terminal conversion
�  Unit non-terminals require change in CKY

O(n3)

Parsing Efficiently
�  With arbitrary grammars

�  Earley algorithm
�  Top-down search

�  Dynamic programming
�  Tabulated partial solutions

�  Some bottom-up constraints

Earley Parsing
�  Avoid repeated work/recursion problem

�  Dynamic programming
�  Store partial parses in “chart”

�  Compactly encodes ambiguity

�  O(N 3)

Earley Parsing
�  Avoid repeated work/recursion problem

�  Dynamic programming
�  Store partial parses in “chart”

�  Compactly encodes ambiguity

� 

�  Chart entries:
�  Subtree for a single grammar rule
�  Progress in completing subtree

�  Position of subtree wrt input

O(N 3)

Earley Algorithm

�  First, left-to-right pass fills out a chart
with N+1 states
�  Think of chart entries as sitting between

words in the input string, keeping track of
states of the parse at these positions

�  For each word position, chart contains set of
states representing all partial parse trees
generated to date. E.g. chart[0] contains all
partial parse trees generated at the beginning
of the sentence

Chart Entries

� predicted constituents

�  in-progress constituents

�  completed constituents

Represent three types of constituents:

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

�  NP → Det • Nom, [1,2] (in progress)

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

�  NP → Det • Nom, [1,2] (in progress)

�  VP →V NP •, [0,3] (completed)

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

�  NP → Det • Nom, [1,2] (in progress)

�  VP →V NP •, [0,3] (completed)

�  [x,y] tells us what portion of the input is
spanned so far by this rule

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

�  NP → Det • Nom, [1,2] (in progress)
�  VP →V NP •, [0,3] (completed)

�  [x,y] tells us what portion of the input is spanned
so far by this rule

�  Each State si:
<dotted rule>, [<back pointer>,<current position>]

S → • VP, [0,0]
�  First 0 means S constituent begins at the

start of input

�  Second 0 means the dot here, too

�  So, this is a top-down prediction

0 Book 1 that 2 flight 3

S → • VP, [0,0]
�  First 0 means S constituent begins at the

start of input
�  Second 0 means the dot here too
�  So, this is a top-down prediction

NP → Det • Nom, [1,2]
�  the NP begins at position 1
�  the dot is at position 2
�  so, Det has been successfully parsed
�  Nom predicted next

0 Book 1 that 2 flight 3

0 Book 1 that 2 flight 3
(continued)

VP → V NP •, [0,3]
�  Successful VP parse of entire input

Successful Parse
�  Final answer found by looking at last entry in chart

Successful Parse
�  Final answer found by looking at last entry in chart

�  If entry resembles S → α • [0,N] then input parsed
successfully

�  Chart will also contain record of all possible parses
of input string, given the grammar

Parsing Procedure for the
Earley Algorithm

�  Move through each set of states in order,
applying one of three operators to each
state:
�  predictor: add predictions to the chart
�  scanner: read input and add corresponding

state to chart
�  completer: move dot to right when new

constituent found

Parsing Procedure for the
Earley Algorithm

�  Move through each set of states in order,
applying one of three operators to each
state:
�  predictor: add predictions to the chart
�  scanner: read input and add corresponding

state to chart
�  completer: move dot to right when new

constituent found

�  Results (new states) added to current or
next set of states in chart

Parsing Procedure for the
Earley Algorithm

�  Move through each set of states in order,
applying one of three operators to each
state:
�  predictor: add predictions to the chart
�  scanner: read input and add corresponding state

to chart
�  completer: move dot to right when new

constituent found

�  Results (new states) added to current or next
set of states in chart

�  No backtracking and no states removed:
keep complete history of parse

States and State Sets

�  Dotted Rule si represented as
<dotted rule>, [<back pointer>, <current position>]

�  State Set Sj to be a collection of states si with the same
<current position>.

Earley Algorithm from Book

Earley Algorithm from Book

3 Main Sub-Routines of
Earley Algorithm

• Predictor: Adds predictions into the chart.
• Completer: Moves the dot to the right

when new constituents are found.
• Scanner: Reads the input words and enters

states representing those words into the
chart.

Predictor
�  Intuition: create new state for top-down

prediction of new phrase.

Predictor
�  Intuition: create new state for top-down

prediction of new phrase.

�  Applied when non part-of-speech non-
terminals are to the right of a dot: S → •
VP [0,0]

Predictor
�  Intuition: create new state for top-down

prediction of new phrase.

�  Applied when non part-of-speech non-
terminals are to the right of a dot: S → •
VP [0,0]

�  Adds new states to current chart
�  One new state for each expansion of the non-

terminal in the grammar
VP → • V [0,0]
VP → • V NP [0,0]

Predictor
�  Intuition: create new state for top-down

prediction of new phrase.

�  Applied when non part-of-speech non-
terminals are to the right of a dot: S → •
VP [0,0]

�  Adds new states to current chart
�  One new state for each expansion of the non-

terminal in the grammar
VP → • V [0,0]
VP → • V NP [0,0]

�  Formally:
 Sj: A → α · B β, [i,j]
 Sj: B → · γ, [j,j]

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

Scanner
�  Intuition: Create new states for rules

matching part of speech of next word.

Scanner
�  Intuition: Create new states for rules

matching part of speech of next word.

�  Applicable when part of speech is to the
right of a dot: VP → • V NP [0,0] ‘Book…’

Scanner
�  Intuition: Create new states for rules

matching part of speech of next word.

�  Applicable when part of speech is to the
right of a dot: VP → • V NP [0,0] ‘Book…’

�  Looks at current word in input

�  If match, adds state(s) to next chart
V à Book �[0,1]

Scanner
�  Intuition: Create new states for rules matching

part of speech of next word.

�  Applicable when part of speech is to the right
of a dot: VP → • V NP [0,0] ‘Book…’

�  Looks at current word in input

�  If match, adds state(s) to next chart
V à Book �[0,1]

�  Formally:
 Sj: A → α � B β, [i,j], B in POS(words[j])

�  Sj+1: B → words[j]�, [j,j+1]

Completer
�  Intuition: parser has finished a new

phrase, so must find and advance all
states that were waiting for this

Completer
�  Intuition: parser has finished a new

phrase, so must find and advance all
states that were waiting for this

�  Applied when dot has reached right end
of rule
NP → Det Nom • [1,3]

Completer
�  Intuition: parser has finished a new phrase, so

must find and advance all states that were
waiting for this

�  Applied when dot has reached right end of rule
NP → Det Nom • [1,3]

�  Find all states w/dot at 1 and expecting an NP:
�  VP → V • NP [0,1]

�  Adds new (completed) state(s) to current chart :
�  VP → V NP • [0,3]

Completer
�  Intuition: parser has finished a new phrase, so must

find and advance all states that were waiting for this

�  Applied when dot has reached right end of rule
NP → Det Nom • [1,3]

�  Find all states w/dot at 1 and expecting an NP:
�  VP → V • NP [0,1]

�  Adds new (completed) state(s) to current chart :
�  VP → V NP • [0,3]

�  Formally: Sk: B → δ ·, [j,k]
 Sk: A → α B · β, [i,k],
 where: Sj: A → α · B β, [i,j].

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

1/13/15
 Speech and Language Processing -
Jurafsky and Martin 59

Chart[1]

1/13/15
 Speech and Language Processing -
Jurafsky and Martin 60

Chart[1]

1/13/15
 Speech and Language Processing -
Jurafsky and Martin 61

Chart[1]

1/13/15
 Speech and Language Processing -
Jurafsky and Martin 62

Chart[1]

1/13/15
 Speech and Language Processing -
Jurafsky and Martin 63

Chart[1]

Prediction of Next Rule

�  When VP → V • is itself processed by the
Completer, S → VP • is added to Chart[1]
since VP is a left corner of S

�  Last few rules in Chart[1] are added by
Predictor when VP → V • NP is processed

�  And so on….

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

1/13/15
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

How do we retrieve the
parses at the end?

�  Augment the Completer to add pointers to prior
states it advances as a field in the current state
�  i.e. what state did we advance here?

�  Read the pointers back from the final state

�  What about ambiguity?

�  What about ambiguity?

�  CKY/Earley can represent it

�  What about ambiguity?

�  CKY/Earley can represent it

�  Can’t resolve it

