Parsing: PCFGs

Ling 571
Deep Processing Techniques for NLP January 21, 2015

Roadmap

- Motivation: Ambiguity
- Approach:
- Probabilistic Context-free Grammars (PCFGs)
- Definition
- Disambiguation
- Parsing
- Evaluation
- Enhancements

Probabilistic Parsing

- Provides strategy for solving disambiguation problem
- Compute the probability of all analyses
- Select the most probable

Probabilistic Parsing

- Provides strategy for solving disambiguation problem
- Compute the probability of all analyses
- Select the most probable
- Employed in language modeling for speech recognition
- N-gram grammars predict words, constrain search
- Also, constrain generation, translation

PCFGs

- Probabilistic Context-free Grammars
- Augmentation of CFGs
N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form $A \rightarrow \beta[p]$, where A is a non-terminal,
β is a string of symbols from the infinite set of strings $(\Sigma \cup N) *$, and p is a number between 0 and 1 expressing $P(\beta \mid A)$
S a designated start symbol

PCFGs

- Probabilistic Context-free Grammars
- Augmentation of CFGs

> | N | a set of non-terminal symbols (or variables) |
| :--- | :--- |
| Σ | a set of terminal symbols (disjoint from N) |
| R | a set of rules or productions, each of the form $A \rightarrow \beta[p]$, |
| | where A is a non-terminal, |
| | β is a string of symbols from the infinite set of strings $(\Sigma \cup N) *$, |
| S | and p is a number between 0 and 1 expressing $P(\beta \mid A)$ |
| S | a designated start symbol |

PCFGs

- Augment each production with probability that LHS will be expanded as RHS
- $P(A \rightarrow B)$ or $P(A \rightarrow B \mid A), P(R H S \mid L H S)$

PCFGs

- Augment each production with probability that LHS will be expanded as RHS
- $P(A \rightarrow B)$ or $P(A \rightarrow B \mid A), p(R H S \mid L H S)$
- Sum over all possible expansions is 1

$$
\sum_{\beta} P(A \rightarrow \beta)=1
$$

PCFGs

- Augment each production with probability that LHS will be expanded as RHS
- $P(A \rightarrow B)$ or $P(A \rightarrow B \mid A), p(R H S \mid L H S)$
- Sum over all possible expansions is 1

$$
\sum_{\beta} P(A \rightarrow \beta)=1
$$

- A PCFG is consistent if sum of probabilities of all sentences in language is 1 .
- Recursive rules often yield inconsistent grammars

Example PCFG

Grammar	Lexicon	
$S \rightarrow N P V P$	$[.80]$	Det \rightarrow that $[.10]\|a\|[.30] \mid$ the $[.60]$
$S \rightarrow$ Aux $N P V P$	$[.15]$	Noun \rightarrow book $[.10] \mid$ flight $[.30]$
$S \rightarrow V P$	$[.05]$	\mid meal $[.15] \mid$ money $[.05]$
$N P \rightarrow$ Pronoun	$[.35]$	\mid flights $[.40] \mid$ dinner $[.10]$
$N P \rightarrow$ Proper-Noun	$[.30]$	Verb \rightarrow book $[.30] \mid$ include $[.30]$
$N P \rightarrow$ Det Nominal	$[.20]$	\mid prefer $;[.40]$
$N P \rightarrow$ Nominal	$[.15]$	Pronoun $\rightarrow I[.40] \mid$ she $[.05]$
Nominal \rightarrow Noun	$[.75]$	\mid me $[.15] \mid$ you $[.40]$
Nominal \rightarrow Nominal Noun $[.20]$	Proper-Noun \rightarrow Houston $[.60]$	
Nominal \rightarrow Nominal PP	$[.05]$	\mid NWA $[.40]$
$V P \rightarrow$ Verb	$[.35]$	Aux \rightarrow does $[.60] \mid$ can $[40]$
$V P \rightarrow$ Verb NP	$[.20]$	Preposition \rightarrow from $[.30] \mid$ to $[.30]$
$V P \rightarrow$ Verb NP $P P$	$[.10]$	\mid on $[.20] \mid$ near $[.15]$
$V P \rightarrow$ Verb PP	$[.15]$	\mid through $[.05]$
$V P \rightarrow$ Verb NP NP	$[.05]$	
$V P \rightarrow$ VP PP	$[.15]$	
$P P \rightarrow$ Preposition NP	$[1.0]$	

Disambiguation

- A PCFG assigns probability to each parse tree T for input S.
- Probability of T: product of all rules to derive T

Disambiguation

- A PCFG assigns probability to each parse tree T for input S.
- Probability of T: product of all rules to derive T

$$
P(T, S)=\prod_{i=1}^{n} P\left(R H S_{i} \mid L H S_{i}\right)
$$

Disambiguation

- A PCFG assigns probability to each parse tree T for input S.
- Probability of T: product of all rules to derive T

$$
\begin{aligned}
& P(T, S)=\prod_{i=1}^{n} P\left(R H S_{i} \mid L H S_{i}\right) \\
& P(T, S)=P(T) P(S \mid T)=P(T)
\end{aligned}
$$

$P(T, S)=0.05$

$P(T, S)=0.05 * 0.2$

$P(T, S)=0.05 * 0.2 * 0.2$

$P(T, S)=0.05^{*} 0.2^{*} 0.2^{*} 0.2$

$P(T, S)=0.05^{*} 0.2 * 0.2 * 0.2^{*} 0.75$

$P(T, S)=0.05^{*} 0.2 * 0.2 * 0.2 * 0.75^{*}$
0.3

$P(T, S)=0.05 * 0.2 * 0.2 * 0.2 * 0.75^{*}$
$0.3 * 0.6$

$P(T, S)=0.05^{*} 0.2^{*} 0.2 * 0.2 * 0.75^{*}$
$0.3 * 0.6 * 0.1$

$P(T, S)=0.05^{*} 0.2 * 0.2 * 0.2 * 0.75^{*}$
$0.3^{*} 0.6^{*} 0.1 * 0.4=2.2 \times 10^{\wedge}-6$

$P(T, S)=0.05^{*} 0.2 * 0.2 * 0.2 * 0.75^{*}$
$P(T, S)=0.05$
$0.3^{*} 0.6 * 0.1 * 0.4=2.2 \times 10^{\wedge}-6$

$P(T, S)=0.05^{*} 0.2 * 0.2 * 0.2 * 0.75^{*}$
$P(T, S)=0.05^{*} 0.1$
$0.3^{*} 0.6 * 0.1 * 0.4=2.2 \times 10^{\wedge}-6$

$P(T, S)=0.05 * 0.2 * 0.2 * 0.2 * 0.75^{*} \quad P(T, S)=0.05^{*} 0.1 * 0.15$
$0.3^{*} 0.6 * 0.1 * 0.4=2.2 \times 10^{\wedge} .6$

$P(T, S)=0.05 * 0.2 * 0.2 * 0.2 * 0.75^{*} \quad \mathrm{P}(\mathrm{T}, \mathrm{S})=0.05^{*} 0.1 * 0.15^{*} 0.75$
$0.3^{*} 0.6 * 0.1 * 0.4=2.2 \times 10^{\wedge} .6$

$P(T, S)=0.05^{*} 0.2 * 0.2 * 0.2 * 0.75^{*}$
$P(T, S)=0.05^{*} 0.1^{*} 0.15^{*} 0.75^{*} 0.75^{*}$
$0.3 * 0.6 * 0.1 * 0.4=2.2 \times 10^{\wedge}-6$

$P(T, S)=0.05^{*} 0.2 * 0.2 * 0.2 * 0.75^{*}$
$P(T, S)=0.05 * 0.1 * 0.15 * 0.75^{*} 0.75^{*}$
$0.3 * 0.6 * 0.1 * 0.4=2.2 \times 10^{\wedge}-6$ $0.3^{*} 0.6 * 0.1 * 0.4=6.1 \times 10^{\wedge}-7$

Formalizing Disambiguation

- Select T such that:

$$
\hat{T}(S)=\underset{T s . t, S=\text { yield }(T)}{\operatorname{argmax}} P(T)
$$

- String of words S is yield of parse tree over S
- Select tree that maximizes probability of parse

Parsing Problem for PCFGs

- Select T such that:

$$
\hat{T}(S)=\underset{T s . t, S=\operatorname{yield}_{(T)}}{\operatorname{argmax}} P(T)
$$

- String of words S is yield of parse tree over S
- Select tree that maximizes probability of parse

Parsing Problem for PCFGs

- Select T such that:

$$
\hat{T}(S)=\underset{T s . t, S=\operatorname{yield}^{(T)}}{\operatorname{argmax}} P(T)
$$

- String of words S is yield of parse tree over S
- Select tree that maximizes probability of parse
- Extend existing algorithms: CKY \& Earley
- Most modern PCFG parsers based on CKY
- Augmented with probabilities

Probabilistic CKY

- Like regular CKY
- Assume grammar in Chomsky Normal Form (CNF)
- Productions:
- A -> B C or A -> w
- Represent input with indices b/t words
- E.g., o Book ${ }_{1}$ that ${ }_{2}$ flight ${ }_{3}$ through $_{4}$ Houston $_{5}$

Probabilistic CKY

- Like regular CKY
- Assume grammar in Chomsky Normal Form (CNF)
- Productions:
- A -> B C or A -> w
- Represent input with indices b/t words
- E.g., o Book ${ }_{1}$ that ${ }_{2}$ flight ${ }_{3}$ through $_{4}$ Houston $_{5}$
- For input string length n and non-terminals V
- Cell[i,j,A] in $(n+1) x(n+1) x V$ matrix contains
- Probability that constituent A spans [i,j]

Probabilistic CKY Algorithm

function PROBABILISTIC-CKY(words,grammar) returns most probable parse and its probability
for $j \leftarrow$ from 1 to LENGTH(words) do
for all $\{A \mid A \rightarrow$ words $[j] \in$ grammar $\}$
table $[j-1, j, A] \leftarrow P(A \rightarrow$ words $[j])$
for $i \leftarrow$ from $j-2$ downto 0 do
for $k \leftarrow i+1$ to $j-1$ do
for all $\{A \mid A \rightarrow B C \in$ grammar,
and table $[i, k, B]>0$ and table $[k, j, C]>0\}$
if $($ table $[i, j, A]<P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C])$ then table $[i, j, A] \leftarrow P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C]$ back $[i, j, A] \leftarrow\{k, B, C\}$
return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

PCKY Grammar Segment

S	$\rightarrow N P V P$.80	Det \rightarrow the

PCKY Matrix:
 The flight includes a meal

Det: 0.4				
[0,1]				

PCKY Matrix:
 The flight includes a meal

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Det: } \mathbf{0 . 4} \\ \text { [0,1] }\end{array} & & & & \\ \hline & \text { N: 0.02 } \\ {[1,2]}\end{array}\right)$

PCKY Matrix:
 The flight includes a meal

Det: 0.4	NP: $0.3^{* 0.4 * 0.02 ~}$ [0,1] $=.0024$ $[0,2]$			
	N: 0.02			
	$[1,2]$			

PCKY Matrix:
 The flight includes a meal

Det: 0.4	NP: $0.3 * 0.4 * 0.02$			
[0,1]	.0024 $[0,2]$			
	N: 0.02			
	$[1,2]$			
		V: 0.05		
		$[2,3]$		

PCKY Matrix:
 The flight includes a meal

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Det: } 0.4 & \begin{array}{l}\text { NP: } \\ 0.3 * 0.4 * 0.02\end{array} & & & \\ \text { [0,1] } & .0024 \\ {[0,2]}\end{array}\right)$

PCKY Matrix:
 The flight includes a meal

Det: 0.4	NP: $0.3 * 0.4 * 0.02$ [0,1] $[0.224$			
	N: 0,3$]$			
	$[1,2]$	$[1,3]$		
		V: 0.05		
		$[2,3]$		

PCKY Matrix:
 The flight includes a meal

Det: $\mathbf{0 . 4}$	NP: O.3*0.4*0.02 [0,1] $[0,024$			
	N: 0.02			
	$[1,2]$	$[1,3]$		
		V: 0.05		
		$[2,3]$		
			Det: 0.4	
			$[3,4]$	

PCKY Matrix:
 The flight includes a meal

Det: $\mathbf{0 . 4}$	NP: O.3*0.4*0.02 [0,1] $[0,024$			
	N: 0.02			
	$[1,2]$	$[1,3]$		
		V: 0.05		
		$[2,3]$	$[2,4]$	
			Det: 0.4	
			$[3,4]$	

PCKY Matrix:
 The flight includes a meal

Det: $\mathbf{0 . 4}$	NP: O.3*0.4*0.02 [0,1] $[0,024$			
	N: 0.02			
$[1,2]$	$[1,3]$	$[1,4]$		
		V: 0.05		
		$[2,3]$	$[2,4]$	
			Det: 0.4	
			$[3,4]$	

PCKY Matrix:
 The flight includes a meal

Det: 0.4 $[0,1]$	NP: $\begin{aligned} & 0.3 * 0.4 * 0.02 \\ & =.0024 \end{aligned}$ $[0,2]$	[0,3]	[0,4]	
	$\begin{aligned} & \mathrm{N}: 0.02 \\ & {[1,2]} \end{aligned}$	[1,3]	[1,4]	
		$\begin{aligned} & \mathrm{V}: 0.05 \\ & {[2,3]} \end{aligned}$	[2,4]	
			Det: 0.4 [3,4]	

PCKY Matrix:
 The flight includes a meal

Det: 0.4 $[0,1]$	$\begin{aligned} & \text { NP: } \\ & 0.3^{*} 0.4^{*} 0.02 \\ & =.0024 \\ & {[0,2]} \end{aligned}$	[0,3]	[0,4]	
	$\begin{aligned} & \mathrm{N}: 0.02 \\ & {[1,2]} \end{aligned}$	[1,3]	[1,4]	
		$\begin{aligned} & \mathrm{V}: 0.05 \\ & {[2,3]} \end{aligned}$	[2,4]	
			Det: 0.4 $[3,4]$	
				$\begin{aligned} & \text { N: } 0.01 \\ & {[4,5]} \end{aligned}$

PCKY Matrix:
 The flight includes a meal

Det: 0.4 $[0,1]$	$\begin{aligned} & \text { NP: } \\ & 0.3^{*} 0.4 * 0.02 \\ & =.0024 \\ & {[0,2]} \end{aligned}$	[0,3]	[0,4]	
	$\begin{array}{\|l} \mathrm{N}: 0.02 \\ {[1,2]} \end{array}$	[1,3]	[1,4]	
		$\begin{aligned} & \mathrm{V}: 0.05 \\ & {[2,3]} \end{aligned}$	[2,4]	
			Det: 0.4 $[3,4]$	$\begin{aligned} & \text { NP: } \\ & 0.3^{*} 0.4^{*} 0.01 \\ & =0.0012 \\ & {[3,5]} \end{aligned}$
				$\begin{aligned} & \mathrm{N}: 0.01 \\ & {[4,5]} \end{aligned}$

PCKY Matrix:
 The flight includes a meal

Det: 0.4 $[0,1]$	$\begin{aligned} & \text { NP: } \\ & 0.3^{*} 0.4^{*} 0.02 \\ & =.0024 \\ & {[0,2]} \end{aligned}$	[0,3]	[0,4]	
	$\begin{aligned} & \mathrm{N}: 0.02 \\ & {[1,2]} \end{aligned}$	[1,3]	[1,4]	
		$\begin{aligned} & V: 0.05 \\ & {[2,3]} \end{aligned}$	[2,4]	VP: 0.2*0.05* $0.0012=0.0$ $00012[2,5]$ 00012 [2,5]
			Det: 0.4 $[3,4]$	$\begin{aligned} & \text { NP: } \\ & 0.3 * 0.4 * 0.01 \\ & =0.0012 \\ & {[3,5]} \end{aligned}$
				$\begin{aligned} & \mathrm{N}: 0.01 \\ & {[4,5]} \end{aligned}$

PCKY Matrix:
 The flight includes a meal

Det: $\mathbf{0 . 4}$	NP: 0.3*0.4*0.02 [0,1] =.0024 $[0,2]$		$[\mathbf{0 , 3]}$	$[\mathbf{0 , 4]}$

Learning Probabilities

- Simplest way:
- Treebank of parsed sentences

Learning Probabilities

- Simplest way:
- Treebank of parsed sentences
- To compute probability of a rule, count:
- Number of times non-terminal is expanded

Learning Probabilities

- Simplest way:
- Treebank of parsed sentences
- To compute probability of a rule, count:
- Number of times non-terminal is expanded
- Number of times non-terminal is expanded by given rule

$$
P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}
$$

Learning Probabilities

- Simplest way:
- Treebank of parsed sentences
- To compute probability of a rule, count:
- Number of times non-terminal is expanded
- Number of times non-terminal is expanded by given rule

$$
P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

- Alternative: Learn probabilities by re-estimating
- (Later)

Probabilistic Parser Development Paradigm

- Training:
- (Large) Set of sentences with associated parses (Treebank)
- E.g., Wall Street Journal section of Penn Treebank, sec 2-21
- 39,830 sentences
- Used to estimate rule probabilities

Probabilistic Parser Development Paradigm

- Training:
- (Large) Set of sentences with associated parses (Treebank)
- E.g., Wall Street Journal section of Penn Treebank, sec 2-21
- 39,830 sentences
- Used to estimate rule probabilities
- Development (dev):
- (Small) Set of sentences with associated parses (WSJ, 22) - Used to tune/verify parser; check for overfitting, etc.

Probabilistic Parser Development Paradigm

- Training:
- (Large) Set of sentences with associated parses (Treebank)
- E.g., Wall Street Journal section of Penn Treebank, sec 2.21
- 39,830 sentences
- Used to estimate rule probabilities
- Development (dev):
- (Small) Set of sentences with associated parses (WSJ, 22)
- Used to tune/verify parser; check for overfitting, etc.
- Test:
- (Small-med) Set of sentences w/parses (WSJ, 23)
- 2416 sentences
- Held out, used for final evaluation

