
Dependency Grammars
and Parsers

Deep Processing for NLP
Ling571

January 28, 2015

Roadmap
�  PCFGs: Efficiencies and Reranking

�  Dependency Grammars
�  Definition

�  Motivation:
�  Limitations of Context-Free Grammars

�  Dependency Parsing
�  By conversion to CFG
�  By Graph-based models
�  By transition-based parsing

Efficiency
�  PCKY is |G|n3

�  Grammar can be huge

�  Grammar can be extremely ambiguous
�  100s of analyses not unusual, esp. for long sentences

�  However, only care about best parses
�  Others can be pretty bad

�  Can we use this to improve efficiency?

Beam Thresholding
�  Inspired by beam search algorithm

�  Assume low probability partial parses unlikely to
yield high probability overall
�  Keep only top k most probably partial parses

�  Retain only k choices per cell
�  For large grammars, could be 50 or 100

�  For small grammars, 5 or 10

Heuristic Filtering
�  Intuition: Some rules/partial parses are unlikely to

end up in best parse. Don’t store those in table.

Heuristic Filtering
�  Intuition: Some rules/partial parses are unlikely to

end up in best parse. Don’t store those in table.

�  Exclusions:
�  Low frequency: exclude singleton productions

Heuristic Filtering
�  Intuition: Some rules/partial parses are unlikely to

end up in best parse. Don’t store those in table.

�  Exclusions:
�  Low frequency: exclude singleton productions

�  Low probability: exclude constituents x s.t. p(x) <10-200

Heuristic Filtering
�  Intuition: Some rules/partial parses are unlikely to

end up in best parse. Don’t store those in table.

�  Exclusions:
�  Low frequency: exclude singleton productions

�  Low probability: exclude constituents x s.t. p(x) <10-200

�  Low relative probability:
�  Exclude x if there exists y s.t. p(y) > 100 * p(x)

Reranking
�  Issue: Locality

�  PCFG probabilities associated with rewrite rules

�  Context-free grammars

Reranking
�  Issue: Locality

�  PCFG probabilities associated with rewrite rules

�  Context-free grammars
�  Approaches create new rules incorporating context:

�  Parent annotation, Markovization, lexicalization

�  Other problems:

Reranking
�  Issue: Locality

�  PCFG probabilities associated with rewrite rules

�  Context-free grammars
�  Approaches create new rules incorporating context:

�  Parent annotation, Markovization, lexicalization

�  Other problems:
�  Increase rules, sparseness

�  Need approach that incorporates broader, global info

Discriminative
Parse Reranking

�  General approach:
�  Parse using (L)PCFG

�  Obtain top-N parses
�  Re-rank top-N parses using better features

Discriminative
Parse Reranking

�  General approach:
�  Parse using (L)PCFG

�  Obtain top-N parses
�  Re-rank top-N parses using better features

�  Discriminative reranking
�  Use arbitrary features in reranker (MaxEnt)

�  E.g. right-branching-ness, speaker identity, conjunctive
parallelism, fragment frequency, etc

Reranking Effectiveness
�  How can reranking improve?

�  N-best includes the correct parse

�  Estimate maximum improvement
�  Oracle parse selection

�  Selects correct parse from N-best
�  If it appears

�  E.g. Collins parser (2000)
�  Base accuracy: 0.897
�  Oracle accuracy on 50-best: 0.968

�  Discriminative reranking: 0.917

Dependency Grammar
�  CFGs:

�  Phrase-structure grammars

�  Focus on modeling constituent structure

Dependency Grammar
�  CFGs:

�  Phrase-structure grammars

�  Focus on modeling constituent structure

�  Dependency grammars:
�  Syntactic structure described in terms of

�  Words

�  Syntactic/Semantic relations between words

Dependency Parse
�  A dependency parse is a tree, where

�  Nodes correspond to words in utterance

�  Edges between nodes represent dependency relations
�  Relations may be labeled (or not)

1/27/15
 Speech and Language Processing -
Jurafsky and Martin 18

Dependency Relations

Dependency Parse Example
�  They hid the letter on the shelf

Why Dependency Grammar?
�  More natural representation for many tasks

�  Clear encapsulation of predicate-argument structure
�  Phrase structure may obscure, e.g. wh-movement

Why Dependency Grammar?
�  More natural representation for many tasks

�  Clear encapsulation of predicate-argument structure
�  Phrase structure may obscure, e.g. wh-movement

�  Good match for question-answering, relation extraction
�  Who did what to whom

�  Build on parallelism of relations between question/relation
specifications and answer sentences

Why Dependency Grammar?
�  Easier handling of flexible or free word order

�  How does CFG handle variations in word order?

Why Dependency Grammar?
�  Easier handling of flexible or free word order

�  How does CFG handle variations in word order?
�  Adds extra phrases structure rules for alternatives

�  Minor issue in English, explosive in other langs

�  What about dependency grammar?

Why Dependency Grammar?
�  Easier handling of flexible or free word order

�  How does CFG handle variations in word order?
�  Adds extra phrases structure rules for alternatives

�  Minor issue in English, explosive in other langs

�  What about dependency grammar?
�  No difference: link represents relation

�  Abstracts away from surface word order

Why Dependency Grammar?
�  Natural efficiencies:

�  CFG: Must derive full trees of many non-terminals

Why Dependency Grammar?
�  Natural efficiencies:

�  CFG: Must derive full trees of many non-terminals

�  Dependency parsing:
�  For each word, must identify

�  Syntactic head, h

�  Dependency label, d

Why Dependency Grammar?
�  Natural efficiencies:

�  CFG: Must derive full trees of many non-terminals

�  Dependency parsing:
�  For each word, must identify

�  Syntactic head, h

�  Dependency label, d

�  Inherently lexicalized
�  Strong constraints hold between pairs of words

Summary
�  Dependency grammar balances complexity and

expressiveness

�  Sufficiently expressive to capture predicate-argument
structure

�  Sufficiently constrained to allow efficient parsing

Conversion
�  Can convert phrase structure to dependency trees

�  Unlabeled dependencies

Conversion
�  Can convert phrase structure to dependency trees

�  Unlabeled dependencies

�  Algorithm:
�  Identify all head children in PS tree

�  Make head of each non-head-child depend on head of
head-child

Dependency Parsing
�  Three main strategies:

�  Convert dependency trees to PS trees
�  Parse using standard algorithms O(n3)

�  Employ graph-based optimization
�  Weights learned by machine learning

�  Shift-reduce approaches based on current word/state
�  Attachment based on machine learning

Parsing by PS Conversion
�  Can map any projective dependency tree to PS tree

�  Non-terminals indexed by words
�  “Projective”: no crossing dependency arcs for ordered words

Dep to PS Tree Conversion
�  For each node w with outgoing arcs,

�  Convert the subtree w and its dependents t1,..,tn to

�  New subtree rooted at Xw with child w and
�  Subtrees at t1,..,tn in the original sentence order

Dep to PS Tree Conversion

Xeffect

Xlittle Xon

little on Right
subtree

effect

E.g., for ‘effect’

Dep to PS Tree Conversion

Xeffect

Xlittle Xon

little on Right
subtree

effect

E.g., for ‘effect’

PS to Dep Tree Conversion
�  What about the dependency labels?

�  Attach labels to non-terminals associated with non-heads

�  E.g. Xlittleè Xlittle:nmod

PS to Dep Tree Conversion
�  What about the dependency labels?

�  Attach labels to non-terminals associated with non-heads

�  E.g. Xlittleè Xlittle:nmod

�  Doesn’t create typical PS trees
�  Does create fully lexicalized, context-free trees

�  Also labeled

PS to Dep Tree Conversion
�  What about the dependency labels?

�  Attach labels to non-terminals associated with non-heads

�  E.g. Xlittleè Xlittle:nmod

�  Doesn’t create typical PS trees
�  Does create fully lexicalized, context-free trees

�  Also labeled

�  Can be parsed with any standard CFG parser
�  E.g. CKY, Earley

Full Example Trees

Example from J. Moore, 2013

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

�  Where do scores come from?
�  Weights on dependency edges by machine learning
�  Learned from large dependency treebank

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

�  Where do scores come from?
�  Weights on dependency edges by machine learning
�  Learned from large dependency treebank

�  Where are the grammar rules?

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

�  Where do scores come from?
�  Weights on dependency edges by machine learning
�  Learned from large dependency treebank

�  Where are the grammar rules?
�  There aren’t any; data-driven processing

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse

�  Edges: Directed edges between all words
�  + Edges from ROOT to all words

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse

�  Edges: Directed edges between all words
�  + Edges from ROOT to all words

�  Identify maximum spanning tree
�  Tree s.t. all nodes are connected

�  Select such tree with highest weight

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse
�  Edges: Directed edges between all words

�  + Edges from ROOT to all words

�  Identify maximum spanning tree
�  Tree s.t. all nodes are connected
�  Select such tree with highest weight
�  Arc-factored model: Weights depend on end nodes & link

�  Weight of tree is sum of participating arcs

Initial Tree

•  Sentence: John saw Mary (McDonald et al, 2005)
•  All words connected; ROOT only has outgoing arcs

Initial Tree

•  Sentence: John saw Mary (McDonald et al, 2005)
•  All words connected; ROOT only has outgoing arcs

•  Goal: Remove arcs to create a tree covering all words
•  Resulting tree is dependency parse

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-

Edmonds algorithm for MST (CLE)

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-

Edmonds algorithm for MST (CLE)

�  Sketch of algorithm:
�  For each node, greedily select incoming arc with max w
�  If the resulting set of arcs forms a tree, this is the MST.

�  If not, there must be a cycle.

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-

Edmonds algorithm for MST (CLE)

�  Sketch of algorithm:
�  For each node, greedily select incoming arc with max w
�  If the resulting set of arcs forms a tree, this is the MST.

�  If not, there must be a cycle.
�  “Contract” the cycle: Treat it as a single vertex

�  Recalculate weights into/out of the new vertex

�  Recursively do MST algorithm on resulting graph

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-Edmonds

algorithm for MST (CLE)

�  Sketch of algorithm:
�  For each node, greedily select incoming arc with max w
�  If the resulting set of arcs forms a tree, this is the MST.
�  If not, there must be a cycle.

�  “Contract” the cycle: Treat it as a single vertex
�  Recalculate weights into/out of the new vertex
�  Recursively do MST algorithm on resulting graph

�  Running time: naïve: O(n3); Tarjan: O(n2)
�  Applicable to non-projective graphs

Initial Tree

CLE: Step 1
�  Find maximum incoming arcs

CLE: Step 1
�  Find maximum incoming arcs

�  Is the result a tree?

CLE: Step 1
�  Find maximum incoming arcs

�  Is the result a tree?
�  No

�  Is there a cycle?

CLE: Step 1
�  Find maximum incoming arcs

�  Is the result a tree?
�  No

�  Is there a cycle?
�  Yes, John/saw

CLE: Step 2
�  Since there’s a cycle:

�  Contract cycle & reweight

�  John+saw as single vertex

CLE: Step 2
�  Since there’s a cycle:

�  Contract cycle & reweight

�  John+saw as single vertex

�  Calculate weights in & out as:
�  Maximum based on internal arcs

�  and original nodes

�  Recurse

Calculating Graph

CLE: Recursive Step
�  In new graph, find graph of

�  Max weight incoming arc for each word

CLE: Recursive Step
�  In new graph, find graph of

�  Max weight incoming arc for each word

�  Is it a tree?

CLE: Recursive Step
�  In new graph, find graph of

�  Max weight incoming arc for each word

�  Is it a tree? Yes!
�  MST, but must recover internal arcs è parse

CLE: Recovering Graph
�  Found maximum spanning tree

�  Need to ‘pop’ collapsed nodes

�  Expand “ROOT à John+saw” = 40

CLE: Recovering Graph
�  Found maximum spanning tree

�  Need to ‘pop’ collapsed nodes

�  Expand “ROOT à John+saw” = 40

�  MST and complete dependency parse

Learning Weights
�  Weights for arc-factored model learned from corpus

�  Weights learned for tuple (wi,wj,l)

Learning Weights
�  Weights for arc-factored model learned from corpus

�  Weights learned for tuple (wi,wj,l)

�  McDonald et al, 2005 employed discriminative ML
�  Perceptron algorithm or large margin variant

Learning Weights
�  Weights for arc-factored model learned from corpus

�  Weights learned for tuple (wi,wj,l)

�  McDonald et al, 2005 employed discriminative ML
�  Perceptron algorithm or large margin variant

�  Operates on vector of local features

Features for Learning Weights
�  Simple categorical features for (wi,L,wj) including:

�  Identity of wi (or char 5-gram prefix), POS of wi

�  Identity of wj (or char 5-gram prefix), POS of wj
�  Label of L, direction of L

�  Sequence of POS tags b/t wi,wj
�  Number of words b/t wi,wj
�  POS tag of wi-1,POS tag of wi+1

�  POS tag of wj-1, POS tag of wj+1

�  Features conjoined with direction of attachment
and distance b/t words

Dependency Parsing
�  Dependency grammars:

�  Compactly represent pred-arg structure

�  Lexicalized, localized
�  Natural handling of flexible word order

�  Dependency parsing:
�  Conversion to phrase structure trees

�  Graph-based parsing (MST), efficient non-proj O(n2)
�  Transition-based parser

�  MALTparser: very efficient O(n)
�  Optimizes local decisions based on many rich features

