Dependency Grammars and Parsers

Deep Processing for NLP Ling571 January 28, 2015

Roadmap

- PCFGs: Efficiencies and Reranking
- Dependency Grammars
 - Definition
 - Motivation:
 - Limitations of Context-Free Grammars
- Dependency Parsing
 - By conversion to CFG
 - By Graph-based models
 - By transition-based parsing

Efficiency

- PCKY is |G|n³
 - Grammar can be huge
 - Grammar can be extremely ambiguous
 - 100s of analyses not unusual, esp. for long sentences
- However, only care about best parses
 - Others can be pretty bad
- Can we use this to improve efficiency?

Beam Thresholding

- Inspired by beam search algorithm
- Assume low probability partial parses unlikely to yield high probability overall
 - Keep only top k most probably partial parses
 - Retain only k choices per cell
 - For large grammars, could be 50 or 100
 - For small grammars, 5 or 10

• Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.

• Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.

- Exclusions:
 - Low frequency: exclude singleton productions

• Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.

- Exclusions:
 - Low frequency: exclude singleton productions
 - Low probability: exclude constituents x s.t. p(x) <10⁻²⁰⁰

 Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.

• Exclusions:

- Low frequency: exclude singleton productions
- Low probability: exclude constituents x s.t. p(x) <10⁻²⁰⁰
- Low relative probability:
 - Exclude x if there exists y s.t. p(y) > 100 * p(x)

Reranking

- Issue: Locality
 - PCFG probabilities associated with rewrite rules
 - Context-free grammars

Reranking

- Issue: Locality
 - PCFG probabilities associated with rewrite rules
 - Context-free grammars
 - Approaches create new rules incorporating context:
 - Parent annotation, Markovization, lexicalization
 - Other problems:

Reranking

- Issue: Locality
 - PCFG probabilities associated with rewrite rules
 - Context-free grammars
 - Approaches create new rules incorporating context:
 - Parent annotation, Markovization, lexicalization
 - Other problems:
 - Increase rules, sparseness
- Need approach that incorporates broader, global info

Discriminative Parse Reranking

- General approach:
 - Parse using (L)PCFG
 - Obtain top-N parses
 - Re-rank top-N parses using better features

Discriminative Parse Reranking

- General approach:
 - Parse using (L)PCFG
 - Obtain top-N parses
 - Re-rank top-N parses using better features
- Discriminative reranking
 - Use arbitrary features in reranker (MaxEnt)
 - E.g. right-branching-ness, speaker identity, conjunctive parallelism, fragment frequency, etc

Reranking Effectiveness

- How can reranking improve?
 - N-best includes the correct parse
- Estimate maximum improvement
 - Oracle parse selection
 - Selects correct parse from N-best
 - If it appears
- E.g. Collins parser (2000)
 - Base accuracy: 0.897
 - Oracle accuracy on 50-best: 0.968
- Discriminative reranking: 0.917

Dependency Grammar

- CFGs:
 - Phrase-structure grammars
 - Focus on modeling constituent structure

Dependency Grammar

- CFGs:
 - Phrase-structure grammars
 - Focus on modeling constituent structure
- Dependency grammars:
 - Syntactic structure described in terms of
 - Words
 - Syntactic/Semantic relations between words

Dependency Parse

- A dependency parse is a tree, where
 - Nodes correspond to words in utterance
 - Edges between nodes represent dependency relations
 - Relations may be labeled (or not)

Dependency Relations

Argument Dependencies	Description
nsubj	nominal subject
csubj	clausal subject
dobj	direct object
iobj	indirect object
pobj	object of preposition
Modifier Dependencies	Description
tmod	temporal modifier
appos	appositional modifier
det	determiner
prep	prepositional modifier

Dependency Parse Example

• They hid the letter on the shelf

- More natural representation for many tasks
 - Clear encapsulation of predicate-argument structure
 - Phrase structure may obscure, e.g. wh-movement

- More natural representation for many tasks
 - Clear encapsulation of predicate-argument structure
 - Phrase structure may obscure, e.g. wh-movement
 - Good match for question-answering, relation extraction
 Who did what to whom
 - Build on parallelism of relations between question/relation specifications and answer sentences

- Easier handling of flexible or free word order
 - How does CFG handle variations in word order?

- Easier handling of flexible or free word order
 - How does CFG handle variations in word order?
 - Adds extra phrases structure rules for alternatives
 - Minor issue in English, explosive in other langs
 - What about dependency grammar?

- Easier handling of flexible or free word order
 - How does CFG handle variations in word order?
 - Adds extra phrases structure rules for alternatives
 - Minor issue in English, explosive in other langs
 - What about dependency grammar?
 - No difference: link represents relation
 - Abstracts away from surface word order

- Natural efficiencies:
 - CFG: Must derive full trees of many non-terminals

- Natural efficiencies:
 - CFG: Must derive full trees of many non-terminals
 - Dependency parsing:
 - For each word, must identify
 - Syntactic head, h
 - Dependency label, d

- Natural efficiencies:
 - CFG: Must derive full trees of many non-terminals
 - Dependency parsing:
 - For each word, must identify
 - Syntactic head, h
 - Dependency label, d
 - Inherently lexicalized
 - Strong constraints hold between pairs of words

Summary

- Dependency grammar balances complexity and expressiveness
 - Sufficiently expressive to capture predicate-argument structure
 - Sufficiently constrained to allow efficient parsing

Conversion

- Can convert phrase structure to dependency trees
 - Unlabeled dependencies

Conversion

- Can convert phrase structure to dependency trees
 - Unlabeled dependencies
- Algorithm:
 - Identify all head children in PS tree
 - Make head of each non-head-child depend on head of head-child

Dependency Parsing

- Three main strategies:
 - Convert dependency trees to PS trees
 - Parse using standard algorithms O(n³)
 - Employ graph-based optimization
 - Weights learned by machine learning
 - Shift-reduce approaches based on current word/state
 - Attachment based on machine learning
Parsing by PS Conversion

- Can map any projective dependency tree to PS tree
 - Non-terminals indexed by words
 - "Projective": no crossing dependency arcs for ordered words

Dep to PS Tree Conversion

- For each node *w* with outgoing arcs,
 - Convert the subtree w and its dependents $t_1, ..., t_n$ to
 - New subtree rooted at X_w with child w and
 - Subtrees at $t_1, ..., t_n$ in the original sentence order

Dep to PS Tree Conversion

E.g., for 'effect'

Dep to PS Tree Conversion

E.g., for 'effect'

PS to Dep Tree Conversion

- What about the dependency labels?
 - Attach labels to non-terminals associated with non-heads
 - E.g. X_{little} → X_{little:nmod}

PS to Dep Tree Conversion

- What about the dependency labels?
 - Attach labels to non-terminals associated with non-heads
 - E.g. X_{little} → X_{little:nmod}
- Doesn't create typical PS trees
 - Does create fully lexicalized, context-free trees
 - Also labeled

PS to Dep Tree Conversion

- What about the dependency labels?
 - Attach labels to non-terminals associated with non-heads
 - E.g. X_{little} → X_{little:nmod}
- Doesn't create typical PS trees
 - Does create fully lexicalized, context-free trees
 - Also labeled
- Can be parsed with any standard CFG parser
 - E.g. CKY, Earley

Full Example Trees

Example from J. Moore, 2013

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.
- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.
- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank
- Where are the grammar rules?

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.
- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank
- Where are the grammar rules?
 - There aren't any; data-driven processing

• Map dependency parsing to maximum spanning tree

- Map dependency parsing to maximum spanning tree
- Idea:
 - Build initial graph: fully connected
 - Nodes: words in sentence to parse

- Map dependency parsing to maximum spanning tree
- Idea:
 - Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - + Edges from ROOT to all words

- Map dependency parsing to maximum spanning tree
- Idea:
 - Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - + Edges from ROOT to all words
 - Identify maximum spanning tree
 - Tree s.t. all nodes are connected
 - Select such tree with highest weight

- Map dependency parsing to maximum spanning tree
- Idea:
 - Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - + Edges from ROOT to all words
 - Identify maximum spanning tree
 - Tree s.t. all nodes are connected
 - Select such tree with highest weight
 - Arc-factored model: Weights depend on end nodes & link
 - Weight of tree is sum of participating arcs

Initial Tree

- Sentence: John saw Mary (McDonald et al, 2005)
 - All words connected; ROOT only has outgoing arcs

Initial Tree

- Sentence: John saw Mary (McDonald et al, 2005)
 - All words connected; ROOT only has outgoing arcs
- Goal: Remove arcs to create a tree covering all words
 - Resulting tree is dependency parse

 McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
 - "Contract" the cycle: Treat it as a single vertex
 - Recalculate weights into/out of the new vertex
 - Recursively do MST algorithm on resulting graph

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
 - "Contract" the cycle: Treat it as a single vertex
 - Recalculate weights into/out of the new vertex
 - Recursively do MST algorithm on resulting graph
- Running time: naïve: O(n³); Tarjan: O(n²)
 - Applicable to non-projective graphs

Initial Tree

• Find maximum incoming arcs

- Find maximum incoming arcs
 - Is the result a tree?

- Find maximum incoming arcs
 - Is the result a tree?
 - No
 - Is there a cycle?

- Find maximum incoming arcs
 - Is the result a tree?
 - No
 - Is there a cycle?
 - Yes, John/saw

- Since there's a cycle:
 - Contract cycle & reweight
 - John+saw as single vertex

- Since there's a cycle:
 - Contract cycle & reweight
 - John+saw as single vertex
 - Calculate weights in & out as:
 - Maximum based on internal arc
 - and original nodes
- Recurse

Calculating Graph

s(Mary, C) 11+20 = 31

s(ROOT, C) 10+30 = 40

CLE: Recursive Step

- In new graph, find graph of
 - Max weight incoming arc for each word

CLE: Recursive Step

- In new graph, find graph of
 - Max weight incoming arc for each word
- Is it a tree?

CLE: Recursive Step

- In new graph, find graph of
 - Max weight incoming arc for each word
- Is it a tree? Yes!
 - MST, but must recover internal arcs → parse

CLE: Recovering Graph

- Found maximum spanning tree
 - Need to 'pop' collapsed nodes
- Expand "ROOT \rightarrow John+saw" = 40

CLE: Recovering Graph

- Found maximum spanning tree
 - Need to 'pop' collapsed nodes
- Expand "ROOT \rightarrow John+saw" = 40
- MST and complete dependency parse

Learning Weights

- Weights for arc-factored model learned from corpus
 - Weights learned for tuple (w_i,w_i,I)

Learning Weights

- Weights for arc-factored model learned from corpus
 - Weights learned for tuple (w_i,w_i,I)
- McDonald et al, 2005 employed discriminative ML
 - Perceptron algorithm or large margin variant

Learning Weights

- Weights for arc-factored model learned from corpus
 - Weights learned for tuple (w_i,w_i,I)
- McDonald et al, 2005 employed discriminative ML
 - Perceptron algorithm or large margin variant
- Operates on vector of local features

Features for Learning Weights

- Simple categorical features for (w_i,L,w_i) including:
 - Identity of w_i (or char 5-gram prefix), POS of w_i
 - Identity of w_i (or char 5-gram prefix), POS of w_i
 - Label of L, direction of L
 - Sequence of POS tags b/t w_i,w_i
 - Number of words b/t w_i,w_i
 - POS tag of w_{i-1}, POS tag of w_{i+1}
 - POS tag of w_{j-1}, POS tag of w_{j+1}
- Features conjoined with direction of attachment and distance b/t words

Dependency Parsing

- Dependency grammars:
 - Compactly represent pred-arg structure
 - Lexicalized, localized
 - Natural handling of flexible word order
- Dependency parsing:
 - Conversion to phrase structure trees
 - Graph-based parsing (MST), efficient non-proj O(n²)
 - Transition-based parser
 - MALTparser: very efficient O(n)
 - Optimizes local decisions based on many rich features