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Roadmap 
�  PCFGs: Efficiencies and Reranking 

�  Dependency Grammars 
�  Definition 

�  Motivation: 
�  Limitations of  Context-Free Grammars 

�  Dependency Parsing 
�  By conversion to CFG 
�  By Graph-based models 
�  By transition-based parsing 



Efficiency 
�  PCKY is |G|n3 

�  Grammar can be huge  

�  Grammar can be extremely ambiguous 
�  100s of  analyses not unusual, esp. for long sentences 

�  However, only care about best parses 
�  Others can be pretty bad 

�  Can we use this to improve efficiency? 



Beam Thresholding 
�  Inspired by beam search algorithm 

�  Assume low probability partial parses unlikely to 
yield high probability overall 
�  Keep only top k most probably partial parses 

�  Retain only k choices per cell 
�  For large grammars, could be 50 or 100 

�  For small grammars, 5 or 10 
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Heuristic Filtering 
�  Intuition: Some rules/partial parses are unlikely to 

end up in best parse. Don’t store those in table. 

�  Exclusions: 
�  Low frequency: exclude singleton productions 

�  Low probability: exclude  constituents x s.t. p(x) <10-200 

�  Low relative probability: 
�  Exclude x if  there exists y s.t. p(y) > 100 * p(x) 
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Reranking 
�  Issue: Locality 

�  PCFG probabilities associated with rewrite rules 

�  Context-free grammars 
�  Approaches create new rules incorporating context: 

�  Parent annotation, Markovization, lexicalization 

�  Other problems: 
�  Increase rules, sparseness 

�  Need approach that incorporates broader, global info 
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Discriminative  
Parse Reranking 

�  General approach: 
�  Parse using (L)PCFG 

�  Obtain top-N parses 
�  Re-rank top-N parses using better features 

�  Discriminative reranking 
�  Use arbitrary features in reranker (MaxEnt) 

�  E.g. right-branching-ness, speaker identity, conjunctive 
parallelism, fragment frequency, etc  



Reranking Effectiveness 
�  How can reranking improve? 

�  N-best includes the correct parse 

�  Estimate maximum improvement 
�  Oracle parse selection 

�  Selects correct parse from N-best 
�  If  it appears 

�  E.g. Collins parser (2000) 
�  Base accuracy: 0.897 
�  Oracle accuracy on 50-best: 0.968 

�  Discriminative reranking: 0.917 
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Dependency Grammar 
�  CFGs: 

�  Phrase-structure grammars 

�  Focus on modeling constituent structure 

�  Dependency grammars: 
�  Syntactic structure described in terms of   

�  Words  

�  Syntactic/Semantic relations between words 



Dependency Parse 
�  A dependency parse is a tree, where 

 

�  Nodes correspond to words in utterance 

�  Edges between nodes represent dependency relations 
�  Relations may be labeled (or not) 
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Dependency Parse Example 
�  They hid the letter on the shelf  
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Why Dependency Grammar? 
�  More natural representation for many tasks 

�  Clear encapsulation of  predicate-argument structure 
�  Phrase structure may obscure, e.g. wh-movement 

�  Good match for question-answering, relation extraction 
�  Who did what to whom 

�  Build on parallelism of  relations between question/relation 
specifications and answer sentences 
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Why Dependency Grammar? 
�  Easier handling of  flexible or free word order 

�  How does CFG handle variations in word order? 
�  Adds extra phrases structure rules for alternatives 

�  Minor issue in English, explosive in other langs 

�  What about dependency grammar? 
�  No difference: link represents relation 

�  Abstracts away from surface word order 
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Why Dependency Grammar? 
�  Natural efficiencies: 

�  CFG: Must derive full trees of  many non-terminals 

�  Dependency parsing:  
�  For each word, must identify 

�  Syntactic head, h 

�  Dependency label, d 

�  Inherently lexicalized  
�  Strong constraints hold between pairs of  words 



Summary 
�  Dependency grammar balances complexity and 

expressiveness 

�  Sufficiently expressive to capture predicate-argument 
structure 

�  Sufficiently constrained to allow efficient parsing 
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Conversion 
�  Can convert phrase structure to dependency trees 

�  Unlabeled dependencies 

�  Algorithm: 
�  Identify all head children in PS tree 

�  Make head of  each non-head-child depend on head of  
head-child 













Dependency Parsing 
�  Three main strategies: 

�  Convert dependency trees to PS trees 
�  Parse using standard algorithms O(n3) 

�  Employ graph-based optimization 
�  Weights learned by machine learning 

�  Shift-reduce approaches based on current word/state 
�  Attachment based on machine learning 



Parsing by PS Conversion 
�  Can map any projective dependency tree to PS tree 

�  Non-terminals indexed by words 
�  “Projective”: no crossing dependency arcs for ordered words 



Dep to PS Tree Conversion 
�  For each node w with outgoing arcs, 

�  Convert the subtree w and its dependents t1,..,tn to 

�  New subtree rooted at Xw with child w and 
�  Subtrees at t1,..,tn  in the original sentence order 



Dep to PS Tree Conversion 
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PS to Dep Tree Conversion 
�  What about the dependency labels? 

�  Attach labels to non-terminals associated with non-heads 

�  E.g. Xlittleè Xlittle:nmod 

�  Doesn’t create typical PS trees 
�  Does create fully lexicalized, context-free trees 

�  Also labeled  

�  Can be parsed with any standard CFG parser 
�  E.g. CKY, Earley 



Full Example Trees 

Example from J. Moore, 2013 
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Graph-based Dependency Parsing 
�  Goal: Find the highest scoring dependency tree T 

for sentence S 
�  If  S is unambiguous, T is the correct parse. 

�  If  S is ambiguous, T is the highest scoring parse. 

�  Where do scores come from? 
�  Weights on dependency edges by machine learning 
�  Learned from large dependency treebank 

�  Where are the grammar rules? 
�  There aren’t any; data-driven processing 
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Graph-based Dependency Parsing 
�  Map dependency parsing to maximum spanning tree 

�  Idea: 
�  Build initial graph: fully connected 

�  Nodes: words in sentence to parse 
�  Edges: Directed edges between all words  

�  + Edges from ROOT to all words 

�  Identify maximum spanning tree 
�  Tree s.t. all nodes are connected 
�  Select such tree with highest weight 
�  Arc-factored model: Weights depend on end nodes & link 

�  Weight of  tree is sum of  participating arcs 



Initial Tree 

•  Sentence: John saw Mary (McDonald et al, 2005) 
•  All words connected; ROOT only has outgoing arcs 



Initial Tree 

•  Sentence: John saw Mary (McDonald et al, 2005) 
•  All words connected; ROOT only has outgoing arcs 

•  Goal: Remove arcs to create a tree covering all words 
•  Resulting tree is dependency parse 
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Maximum Spanning Tree 
�  McDonald et al, 2005 use variant of  Chu-Liu-Edmonds 

algorithm for MST (CLE) 

�  Sketch of  algorithm: 
�  For each node, greedily select incoming arc with max w 
�  If  the resulting set of  arcs forms a tree, this is the MST. 
�  If  not, there must be a cycle. 

�  “Contract” the cycle: Treat it as a single vertex 
�  Recalculate weights into/out of  the new vertex 
�  Recursively do MST algorithm on resulting graph 

�  Running time: naïve: O(n3); Tarjan: O(n2) 
�  Applicable to non-projective graphs 



Initial Tree 
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CLE: Step 1 
�  Find maximum incoming arcs 

�  Is the result a tree? 
�  No 

�  Is there a cycle? 
�  Yes, John/saw 
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CLE: Step 2 
�  Since there’s a cycle: 

�  Contract cycle & reweight 

�  John+saw  as single vertex 

�  Calculate weights in & out as: 
�  Maximum based on internal arcs 

�   and original nodes  

�  Recurse 



Calculating Graph 
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CLE: Recursive Step 
�  In new graph, find graph of  

�  Max weight incoming arc for each word 

�  Is it a tree? Yes! 
�  MST, but must recover internal arcs è parse 
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CLE: Recovering Graph 
�  Found maximum spanning tree 

�  Need to ‘pop’ collapsed nodes 

�  Expand “ROOT à John+saw” = 40 

�  MST and complete dependency parse 
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Learning Weights 
�  Weights for arc-factored model learned from corpus 

�  Weights learned for tuple (wi,wj,l) 

�  McDonald et al, 2005 employed discriminative ML 
�   Perceptron algorithm or large margin variant  

�  Operates on vector of  local features 



Features for Learning Weights 
�  Simple categorical features for (wi,L,wj) including: 

�  Identity of  wi (or char 5-gram prefix), POS of  wi  

�  Identity of  wj (or char 5-gram prefix), POS of  wj 
�  Label of  L, direction of  L 

�  Sequence of  POS tags b/t wi,wj 
�  Number of  words b/t wi,wj 
�  POS tag of  wi-1,POS tag of  wi+1 

�  POS tag of  wj-1, POS tag of  wj+1 

�  Features conjoined with direction of  attachment 
and distance b/t words  



Dependency Parsing 
�  Dependency grammars: 

�  Compactly represent pred-arg structure 

�  Lexicalized, localized 
�  Natural handling of  flexible word order 

�  Dependency parsing: 
�  Conversion to phrase structure trees  

�  Graph-based parsing (MST), efficient non-proj O(n2) 
�  Transition-based parser 

�  MALTparser: very efficient O(n) 
�  Optimizes local decisions based on many rich features 


