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Roadmap 
�  Dependency parsing 

�  Graph-based dependency parsing 
�  Maximum spanning tree 

�  CLE Algorithm 

�  Learning weights 

�  Feature-based parsing 
�  Motivation 
�  Features 
�  Unification 



Dependency Parse Example 
�  They hid the letter on the shelf  
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Graph-based Dependency Parsing 
�  Goal: Find the highest scoring dependency tree T 

for sentence S 
�  If  S is unambiguous, T is the correct parse. 

�  If  S is ambiguous, T is the highest scoring parse. 

�  Where do scores come from? 
�  Weights on dependency edges by machine learning 
�  Learned from large dependency treebank 

�  Where are the grammar rules? 
�  There aren’t any; data-driven processing 
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Graph-based Dependency Parsing 
�  Map dependency parsing to maximum spanning tree 

�  Idea: 
�  Build initial graph: fully connected 

�  Nodes: words in sentence to parse 
�  Edges: Directed edges between all words  

�  + Edges from ROOT to all words 

�  Identify maximum spanning tree 
�  Tree s.t. all nodes are connected 
�  Select such tree with highest weight 
�  Arc-factored model: Weights depend on end nodes & link 

�  Weight of  tree is sum of  participating arcs 
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Initial Tree 

•  Sentence: John saw Mary (McDonald et al, 2005) 
•  All words connected; ROOT only has outgoing arcs 

•  Goal: Remove arcs to create a tree covering all words 
•  Resulting tree is dependency parse 
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Maximum Spanning Tree 
�  McDonald et al, 2005 use variant of  Chu-Liu-Edmonds 

algorithm for MST (CLE) 

�  Sketch of  algorithm: 
�  For each node, greedily select incoming arc with max w 
�  If  the resulting set of  arcs forms a tree, this is the MST. 
�  If  not, there must be a cycle. 

�  “Contract” the cycle: Treat it as a single vertex 
�  Recalculate weights into/out of  the new vertex 
�  Recursively do MST algorithm on resulting graph 

�  Running time: naïve: O(n3); Tarjan: O(n2) 
�  Applicable to non-projective graphs 



Initial Tree 
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CLE: Step 1 
�  Find maximum incoming arcs 

�  Is the result a tree? 
�  No 

�  Is there a cycle? 
�  Yes, John/saw 
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CLE: Step 2 
�  Since there’s a cycle: 

�  Contract cycle & reweight 

�  John+saw  as single vertex 

�  Calculate weights in & out as: 
�  Maximum based on internal arcs 

�   and original nodes  

�  Recurse 



Calculating Graph 
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CLE: Recursive Step 
�  In new graph, find graph of  

�  Max weight incoming arc for each word 

�  Is it a tree? Yes! 
�  MST, but must recover internal arcs è parse 
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CLE: Recovering Graph 
�  Found maximum spanning tree 

�  Need to ‘pop’ collapsed nodes 

�  Expand “ROOT à John+saw” = 40 

�  MST and complete dependency parse 
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Learning Weights 
�  Weights for arc-factored model learned from corpus 

�  Weights learned for tuple (wi,L,wj) 

�  McDonald et al, 2005 employed discriminative ML 
�   Perceptron algorithm or large margin variant  

�  Operates on vector of  local features 



Features for Learning Weights 
�  Simple categorical features for (wi,L,wj) including: 

�  Identity of  wi (or char 5-gram prefix), POS of  wi  

�  Identity of  wj (or char 5-gram prefix), POS of  wj 
�  Label of  L, direction of  L 

�  Sequence of  POS tags b/t wi,wj 
�  Number of  words b/t wi,wj 
�  POS tag of  wi-1,POS tag of  wi+1 

�  POS tag of  wj-1, POS tag of  wj+1 

�  Features conjoined with direction of  attachment 
and distance b/t words  



Dependency Parsing 
�  Dependency grammars: 

�  Compactly represent pred-arg structure 

�  Lexicalized, localized 
�  Natural handling of  flexible word order 

�  Dependency parsing: 
�  Conversion to phrase structure trees  

�  Graph-based parsing (MST), efficient non-proj O(n2) 
�  Transition-based parser 

�  MALTparser: very efficient O(n) 
�  Optimizes local decisions based on many rich features 



Features 



Roadmap 
�  Features: Motivation 

�  Constraint & compactness 

�  Features 
�  Definitions  & representations 

�  Unification 

�  Application of  features in the grammar 
�  Agreement, subcategorization 

�  Parsing with features  & unification 
�  Augmenting the Earley parser, unification parsing 

�  Extensions: Types, inheritance, etc 

�  Conclusion 
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Constraints & Compactness 
�  Constraints in grammar 

�  S à NP VP 
�  They run. 

�  He runs. 

�  But… 
�   *They runs 

�   *He run 

�   *He disappeared the flight 

�  Violate agreement (number), subcategorization 
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Enforcing Constraints 
�  Enforcing constraints 

�  Add categories, rules 
�  Agreement: 

�  Sà NPsg3p VPsg3p,  

�  S à NPpl3p VPpl3p,  

�  Subcategorization: 
�  VP à Vtrans NP, 

�  VP à Vintrans,  

�  VP à Vditrans NP NP 

�  Explosive!, loses key generalizations 



Why features? 
� Need compact, general constraints 

�  S à NP VP 



Why features? 
� Need compact, general constraints 

�  S à NP VP 
�  Only if  NP and VP agree 



Why features? 
� Need compact, general constraints 

�  S à NP VP 
�  Only if  NP and VP agree 

� How can we describe agreement, subcat? 



Why features? 
� Need compact, general constraints 

�  S à NP VP 
�  Only if  NP and VP agree 

� How can we describe agreement, subcat? 
�  Decompose into elementary features that must  

be consistent 
�  E.g. Agreement 



Why features? 
� Need compact, general constraints 

�  S à NP VP 
�  Only if  NP and VP agree 

� How can we describe agreement, subcat? 
�  Decompose into elementary features that must  

be consistent 
�  E.g. Agreement 

�  Number, person, gender, etc  



Why features? 
�  Need compact, general constraints 

�  S à NP VP 
�  Only if  NP and VP agree 

�  How can we describe agreement, subcat? 
�  Decompose into elementary features that must  be 

consistent 
�  E.g. Agreement 

�  Number, person, gender, etc  

�  Augment CF rules with feature constraints 
�  Develop mechanism to enforce consistency 
�  Elegant, compact, rich representation 



Feature Representations 
�  Fundamentally, Attribute-Value pairs 

�  Values may be symbols or feature structures 
�  Feature path: list of  features in structure to value 

�  “Reentrant feature structures”: share some struct 

�  Represented as 
�  Attribute-value matrix (AVM), or 

�  Directed acyclic graph (DAG) 



AVM 

NUMBER            PL 

PERSON             3 

NUMBER            PL 
 
PERSON              3 

CAT                    NP 
 
NUMBER            PL 
 
PERSON             3 

CAT                           NP 
 
AGREEMENT 

NUMBER            PL 
 
PERSON              3 

CAT                           S 
 
HEAD   AGREEM’T 

NUMBER            PL 
 
PERSON              3 

1 

SUBJECT   AGREEMENT  1 
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Unification 
�  Two key roles: 

�  Merge compatible feature structures 

�  Reject incompatible feature structures 

�  Two structures can unify if  
�  Feature structures are identical 

�  Result in same structure 

�  Feature structures match where both have values, 
differ in missing or underspecified 
�  Resulting structure incorporates constraints of  both 
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Subsumption 
�  Relation between feature structures 

�  Less specific f.s. subsumes more specific f.s. 
�  F.s. F subsumes f.s. G iff  

�  For every feature x in F, F(x) subsumes G(x) 
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q) 

�  Examples: 
�  A: [Number SG], B: [Person 3] 
�  C:[Number SG] 

�  [Person 3] 

�  A subsumes C; B subsumes C; B,A don’t subsume 
�  Partial order on f.s. 
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Unification Examples 
�  Identical 

�  [Number SG] U [Number SG]=[Number SG] 

�  Underspecified 
�  [Number SG] U [Number []] = [Number SG] 

�  Different specification 
�  [Number SG] U [Person 3] = [Number SG] 
�                                              [Person      3] 

�  Mismatched 
�  [Number SG] U [Number PL] à Fails!   



More Unification Examples 
AGREEMENT     [1] 
 
SUBJECT      AGREEMENT [1] 

SUBJECT        AGREEMENT 
PERSON      3 
NUMBER    SG 

U 

= 

SUBJECT        AGREEMENT [1] 
PERSON      3 
NUMBER    SG 

AGREEMENT  [1] 



Features in CFGs: 
Agreement 

�  Goal:  
�  Support agreement of  NP/VP, Det Nominal 

�  Approach: 
�  Augment CFG rules with features 
�  Employ head features 

�  Each phrase: VP, NP has head 
�  Head: child that provides features to phrase 

�  Associates grammatical role with word  

�  VP – V; NP – Nom, etc 



Agreement with Heads and 
Features 

VP à Verb NP 
<VP HEAD> = <Verb HEAD> 
 
NP à Det Nominal 
<NP HEAD> = <Nominal HEAD> 
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT> 
 
Nominal à Noun 
<Nominal HEAD> = <Noun HEAD> 
 
Noun à flights 
<Noun HEAD AGREEMENT NUMBER> = PL 
 
Verb à serves 
<Verb HEAD AGREEMENT NUMBER> = SG 
<Verb HEAD AGREEMENT PERSON> = 3 
 



Feature Applications 
�  Subcategorization: 

�  Verb-Argument constraints 
�  Number, type, characteristics of  args (e.g. animate) 

�  Also adjectives, nouns 

�  Long distance dependencies 
�  E.g. filler-gap relations in wh-questions, rel 



Implementing Unification 
�  Data Structure: 

�  Extension of  the DAG representation 

�  Each f.s. has a content field and a pointer field 
�  If  pointer field is null, content field has the f.s. 

�  If  pointer field is non-null, it points to actual f.s. 



NUMBER
 SG 

PERSON
 3 



Implementing Unification: II 
�  Algorithm: 

�  Operates on pairs of  feature structures 
�  Order independent, destructive 

�  If  fs1 is null, point to fs2 
�  If  fs2 is null, point to fs1 

�  If  both are identical, point fs1 to fs2, return fs2 
�  Subsequent updates will update both 

�  If  non-identical atomic values, fail! 



Implementing Unification: 
III 

�  If  non-identical, complex structures 
�  Recursively traverse all features of  fs2 

�  If  feature in fs2 is missing in fs1 
�  Add to fs1 with value null 

�  If  all unify, point fs2 to fs1 and return fs1 



Example 
AGREEMENT [1]        NUMBER     SG 
 
SUBJECT                    AGREEMENT [1] 

SUBJECT  AGREEMENT         PERSON         3 

U 

[ AGREEMENT [1]] U [AGREEMENT [PERSON  3]] 
 
[NUMBER SG] U [PERSON 3] 
 
[NUMBER     SG]    U [PERSON 3] 
[PERSON NULL] 
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Unification and the Earley 
Parser 

�  Employ constraints to restrict addition to chart 

�  Actually pretty straightforward 
�  Augment rules with feature structure 

�  Augment state (chart entries) with DAG 
�  Prediction adds DAG from rule 

�  Completion applies unification (on copies) 
�  Adds entry only if  current DAG is NOT subsumed  



Conclusion 
�  Features allow encoding of  constraints 

�  Enables compact representation of  rules 
�  Supports natural generalizations 

�  Unification ensures compatibility of  features 
�  Integrates easily with existing parsing mech. 

�  Many unification-based grammatical theories 



Unification Parsing 
�  Abstracts over categories 

�  S-> NP VP => 
�  X0 -> X1 X2; <X0 cat> = S; <X1 cat>=NP;  
�  <X2 cat>=VP 

�  Conjunction: 
�  X0->X1 and X2; <X1 cat> =<X2 cat>;  
�  <X0 cat>=<X1 cat> 

�  Issue: Completer depends on categories 

�  Solution: Completer looks for DAGs which unify 
with the just-completed state’s DAG 



Extensions 
�  Types and inheritance 

�  Issue: generalization across feature structures 
�  E.g. many variants of  agreement  

�  More or less specific: 3rd vs sg vs 3rdsg 

�  Approach: Type hierarchy 
�  Simple atomic types match literally 

�  Multiple inheritance hierarchy 
�  Unification of  subtypes is most general type that is more 

specific than two input types 

�  Complex types encode legal features, etc 








