Roadmap

- Dependency parsing
 - Graph-based dependency parsing
 - Maximum spanning tree
 - CLE Algorithm
 - Learning weights

- Feature-based parsing
 - Motivation
 - Features
 - Unification
Dependency Parse Example

- They hid the letter on the shelf
Graph-based Dependency Parsing

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.
Graph-based Dependency Parsing

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.

- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank
Graph-based Dependency Parsing

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.

- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank

- Where are the grammar rules?
Graph-based Dependency Parsing

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.

- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank

- Where are the grammar rules?
 - There aren’t any; data-driven processing
Graph-based Dependency Parsing

- Map dependency parsing to maximum spanning tree
Graph-based Dependency Parsing

- Map dependency parsing to maximum spanning tree

- Idea:
 - Build initial graph: fully connected
 - Nodes: words in sentence to parse
Graph-based Dependency Parsing

- Map dependency parsing to maximum spanning tree

Idea:
- Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - + Edges from ROOT to all words
Graph-based Dependency Parsing

- Map dependency parsing to maximum spanning tree

Idea:
- Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - + Edges from ROOT to all words
- Identify maximum spanning tree
 - Tree s.t. all nodes are connected
 - Select such tree with highest weight
Graph-based Dependency Parsing

- Map dependency parsing to maximum spanning tree

Idea:
- Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - Edges from ROOT to all words
- Identify maximum spanning tree
 - Tree s.t. all nodes are connected
 - Select such tree with highest weight
 - Arc-factored model: Weights depend on end nodes & link
 - Weight of tree is sum of participating arcs
Initial Tree

• Sentence: John saw Mary (McDonald et al, 2005)
 • All words connected; ROOT only has outgoing arcs
Initial Tree

- Sentence: John saw Mary (McDonald et al, 2005)
 - All words connected; ROOT only has outgoing arcs
 - Goal: Remove arcs to create a tree covering all words
 - Resulting tree is dependency parse
Maximum Spanning Tree

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
Maximum Spanning Tree

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
Maximum Spanning Tree

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
 - “Contract” the cycle: Treat it as a single vertex
 - Recalculate weights into/out of the new vertex
 - Recursively do MST algorithm on resulting graph
Maximum Spanning Tree

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
 - “Contract” the cycle: Treat it as a single vertex
 - Recalculate weights into/out of the new vertex
 - Recursively do MST algorithm on resulting graph

- Running time: naïve: $O(n^3)$; Tarjan: $O(n^2)$
 - Applicable to non-projective graphs
Initial Tree
CLE: Step 1

- Find maximum incoming arcs
CLE: Step 1

- Find maximum incoming arcs
- Is the result a tree?
CLE: Step 1

- Find maximum incoming arcs
 - Is the result a tree?
 - No
 - Is there a cycle?
CLE: Step 1

- Find maximum incoming arcs
 - Is the result a tree?
 - No
 - Is there a cycle?
 - Yes, John/saw
CLE: Step 2

- Since there’s a cycle:
 - Contract cycle & reweight
 - John+saw as single vertex
CLE: Step 2

- Since there’s a cycle:
 - Contract cycle & reweight
 - John+saw as single vertex

- Calculate weights in & out as:
 - Maximum based on internal arcs
 - and original nodes

- Recurse
Calculating Graph

\[s(\text{Mary, C}) = 11 + 20 = 31 \]
\[s(\text{ROOT, C}) = 10 + 30 = 40 \]
CLE: Recursive Step

- In new graph, find graph of
- Max weight incoming arc for each word
CLE: Recursive Step

- In new graph, find graph of
 - Max weight incoming arc for each word

- Is it a tree?
CLE: Recursive Step

- In new graph, find graph of
 - Max weight incoming arc for each word

- Is it a tree? Yes!
 - MST, but must recover internal arcs ➔ parse
CLE: Recovering Graph

- Found maximum spanning tree
 - Need to ‘pop’ collapsed nodes
- Expand “ROOT → John+saw” = 40
CLE: Recovering Graph

- Found maximum spanning tree
 - Need to ‘pop’ collapsed nodes
- Expand “ROOT \rightarrow John+saw” = 40
- MST and complete dependency parse
Learning Weights

- Weights for arc-factored model learned from corpus
- Weights learned for tuple \((w_i, w_j, l)\)
Learning Weights

- Weights for arc-factored model learned from corpus
 - Weights learned for tuple \((w_i, w_j, l)\)

- McDonald et al, 2005 employed discriminative ML
 - Perceptron algorithm or large margin variant
Learning Weights

- Weights for arc-factored model learned from corpus
 - Weights learned for tuple \((w_i, L, w_j)\)
- McDonald et al, 2005 employed discriminative ML
 - Perceptron algorithm or large margin variant
- Operates on vector of local features
Features for Learning Weights

- Simple categorical features for \((w_i,L,w_j)\) including:
 - Identity of \(w_i\) (or char 5-gram prefix), POS of \(w_i\)
 - Identity of \(w_j\) (or char 5-gram prefix), POS of \(w_j\)
 - Label of \(L\), direction of \(L\)
 - Sequence of POS tags b/t \(w_i,w_j\)
 - Number of words b/t \(w_i,w_j\)
 - POS tag of \(w_{i+1}\), POS tag of \(w_{i+1}\)
 - POS tag of \(w_{j+1}\), POS tag of \(w_{j+1}\)

- Features conjoined with direction of attachment and distance b/t words
Dependency Parsing

- Dependency grammars:
 - Compactly represent pred-arg structure
 - Lexicalized, localized
 - Natural handling of flexible word order

- Dependency parsing:
 - Conversion to phrase structure trees
 - Graph-based parsing (MST), efficient non-proj $O(n^2)$
 - Transition-based parser
 - MALTparser: very efficient $O(n)$
 - Optimizes local decisions based on many rich features
Features
Roadmap

• Features: Motivation
 • Constraint & compactness

• Features
 • Definitions & representations

• Unification

• Application of features in the grammar
 • Agreement, subcategorization

• Parsing with features & unification
 • Augmenting the Earley parser, unification parsing

• Extensions: Types, inheritance, etc

• Conclusion
Constraints & Compactness

- Constraints in grammar
 - $S \rightarrow NP \ VP$
 - They run.
 - He runs.
Constraints & Compactness

- Constraints in grammar
 - $S \rightarrow NP \ VP$
 - They run.
 - He runs.
 - But...
 - *They runs
 - *He run
 - *He disappeared the flight
Constraints & Compactness

- Constraints in grammar
 - $S \rightarrow NP \ VP$
 - They run.
 - He runs.
 - But...
 - *They runs
 - *He run
 - *He disappeared the flight

- Violate agreement (number), subcategorization
Enforcing Constraints

- Enforcing constraints
Enforcing Constraints

- Enforcing constraints
- Add categories, rules
Enforcing Constraints

- Enforcing constraints
 - Add categories, rules
 - Agreement:
 - S\rightarrow NPsg3p VPsg3p,
 - S\rightarrow NPpl3p VPpl3p,
Enforcing Constraints

- Enforcing constraints
 - Add categories, rules
 - Agreement:
 - $S \rightarrow NP_{sg3p} \ VP_{sg3p}$,
 - $S \rightarrow NP_{pl3p} \ VP_{pl3p}$,

 - Subcategorization:
 - $VP \rightarrow V_{trans} \ NP$,
 - $VP \rightarrow V_{intrans}$,
 - $VP \rightarrow V_{ditrans} \ NP \ NP$
Enforcing Constraints

- Enforcing constraints
 - Add categories, rules
 - Agreement:
 - \(S \rightarrow \text{NPsg3p VPsg3p} \),
 - \(S \rightarrow \text{NPpl3p VPpl3p} \),
 - Subcategorization:
 - \(\text{VP} \rightarrow \text{Vtrans NP} \),
 - \(\text{VP} \rightarrow \text{Vintrans} \),
 - \(\text{VP} \rightarrow \text{Vditrans NP NP} \)
 - Explosive!, loses key generalizations
Why features?

- Need compact, general constraints
 - $S \rightarrow NP \ VP$
Why features?

- Need compact, general constraints
 - $S \rightarrow NP \; VP$
 - Only if NP and VP agree
Why features?

- Need compact, general constraints
 - S \rightarrow NP VP
 - Only if NP and VP agree
- How can we describe agreement, subcat?
Why features?

- Need compact, general constraints
 - S \rightarrow NP VP
 - Only if NP and VP agree

- How can we describe agreement, subcat?
 - Decompose into elementary features that must be consistent
 - E.g. Agreement
Why features?

- Need compact, general constraints
 - S \rightarrow NP VP
 - Only if NP and VP agree

- How can we describe agreement, subcat?
 - Decompose into elementary features that must be consistent
 - E.g. Agreement
 - Number, person, gender, etc
Why features?

- Need compact, general constraints
 - S \rightarrow \text{NP VP}
 - Only if NP and VP agree

- How can we describe agreement, subcat?
 - Decompose into elementary features that must be consistent
 - E.g. Agreement
 - Number, person, gender, etc

- Augment CF rules with feature constraints
 - Develop mechanism to enforce consistency
 - Elegant, compact, rich representation
Feature Representations

- Fundamentally, Attribute-Value pairs
 - Values may be symbols or feature structures
 - Feature path: list of features in structure to value
 - “Reentrant feature structures”: share some struct

- Represented as
 - Attribute-value matrix (AVM), or
 - Directed acyclic graph (DAG)
Unification

- Two key roles:
Unification

- Two key roles:
 - Merge compatible feature structures
Unification

- Two key roles:
 - Merge compatible feature structures
 - Reject incompatible feature structures
Unification

- Two key roles:
 - Merge compatible feature structures
 - Reject incompatible feature structures

- Two structures can unify if
Unification

- Two key roles:
 - Merge compatible feature structures
 - Reject incompatible feature structures

- Two structures can unify if
 - Feature structures are identical
 - Result in same structure
Unification

- Two key roles:
 - Merge compatible feature structures
 - Reject incompatible feature structures

- Two structures can unify if
 - Feature structures are identical
 - Result in same structure
 - Feature structures match where both have values, differ in missing or underspecified
 - Resulting structure incorporates constraints of both
Subsumption

• Relation between feature structures
 • Less specific f.s. subsumes more specific f.s.
 • F.s. F subsumes f.s. G iff
 • For every feature x in F, F(x) subsumes G(x)
 • For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)
Subsumption

- Relation between feature structures
 - Less specific f.s. subsumes more specific f.s.
 - F.s. F subsumes f.s. G iff
 - For every feature x in F, F(x) subsumes G(x)
 - For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

- Examples:
 - A: [Number SG], B: [Person 3]
 - C:[Number SG]
 - [Person 3]
Subsumption

- Relation between feature structures
 - Less specific f.s. subsumes more specific f.s.
 - F.s. F subsumes f.s. G iff
 - For every feature x in F, F(x) subsumes G(x)
 - For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

- Examples:
 - A: [Number SG], B: [Person 3]
 - C:[Number SG]
 - [Person 3]
 - A subsumes C; B subsumes C; B,A don’t subsume
 - Partial order on f.s.
Unification Examples

- Identical
- [Number SG] U [Number SG]
Unification Examples

- Identical
 - \([\text{Number SG}] \cup [\text{Number SG}]= [\text{Number SG}]\)

- Underspecified
 - \([\text{Number SG}] \cup [\text{Number []}]\)
Unification Examples

- Identical
 - \([\text{Number SG}] \cup \text{[Number SG]} = [\text{Number SG}]\)

- Underspecified
 - \([\text{Number SG}] \cup \text{[Number []]} = [\text{Number SG}]\)

- Different specification
 - \([\text{Number SG}] \cup \text{[Person 3]}\)
Unification Examples

- Identical
 - \([\text{Number SG}] \cup [\text{Number SG}] = [\text{Number SG}]\)

- Underspecified
 - \([\text{Number SG}] \cup [\text{Number []]} = [\text{Number SG}]\)

- Different specification
 - \([\text{Number SG}] \cup [\text{Person 3}] = [\text{Number SG}]\)
 - \([\text{Number SG}] \cup [\text{Person 3}]\)
 - \([\text{Number SG}] \cup [\text{Number PL}]\)
Unification Examples

- Identical
 - [Number SG] U [Number SG] = [Number SG]

- Underspecified
 - [Number SG] U [Number []] = [Number SG]

- Different specification
 - [Number SG] U [Person 3] = [Number SG]
 - [Person 3]

- Mismatched
 - [Number SG] U [Number PL] \rightarrow Fails!
More Unification Examples

\[
\begin{align*}
&\text{AGREEMENT} [1] \quad U \\
&\text{SUBJECT} \quad \text{AGREEMENT} [1] \\
&\text{SUBJECT} \quad \text{AGREEMENT} \\
&\text{PERSON} \quad 3 \quad \text{SG} \\
&\text{AGREEMENT} [1] \\
&\text{SUBJECT} \quad \text{AGREEMENT} [1] \\
&\text{PERSON} \quad 3 \quad \text{SG}
\end{align*}
\]
Features in CFGs: Agreement

- **Goal:**
 - Support agreement of NP/VP, Det Nominal

- **Approach:**
 - Augment CFG rules with features
 - Employ head features
 - Each phrase: VP, NP has head
 - Head: child that provides features to phrase
 - Associates grammatical role with word
 - VP – V; NP – Nom, etc
Agreement with Heads and Features

VP \rightarrow \text{Verb NP}
<VP \text{HEAD}> = <\text{Verb HEAD}>

NP \rightarrow \text{Det Nominal}
<NP \text{HEAD}> = <\text{Nominal HEAD}>
<\text{Det HEAD AGREEMENT}> = <\text{Nominal HEAD AGREEMENT}>

\text{Nominal} \rightarrow \text{Noun}
<\text{Nominal HEAD}> = <\text{Noun HEAD}>

\text{Noun} \rightarrow \text{flights}
<\text{Noun HEAD AGREEMENT NUMBER}> = \text{PL}

\text{Verb} \rightarrow \text{serves}
<\text{Verb HEAD AGREEMENT NUMBER}> = \text{SG}
<\text{Verb HEAD AGREEMENT PERSON}> = 3
Feature Applications

- **Subcategorization:**
 - Verb-Argument constraints
 - Number, type, characteristics of args (e.g. animate)
 - Also adjectives, nouns

- **Long distance dependencies**
 - E.g. filler-gap relations in wh-questions, rel
Implementing Unification

- Data Structure:
 - Extension of the DAG representation
 - Each f.s. has a content field and a pointer field
 - If pointer field is null, content field has the f.s.
 - If pointer field is non-null, it points to actual f.s.
Implementing Unification: II

- Algorithm:
 - Operates on pairs of feature structures
 - Order independent, destructive
 - If fs1 is null, point to fs2
 - If fs2 is null, point to fs1
 - If both are identical, point fs1 to fs2, return fs2
 - Subsequent updates will update both
 - If non-identical atomic values, fail!
Implementing Unification: III

- If non-identical, complex structures
 - Recursively traverse all features of fs2
 - If feature in fs2 is missing in fs1
 - Add to fs1 with value null
 - If all unify, point fs2 to fs1 and return fs1
Example

\[
\begin{align*}
&\text{[AGREEMENT [1]] U [AGREEMENT [PERSON 3]]} \\
&\text{[NUMBER SG] U [PERSON 3]} \\
&\text{[NUMBER SG] U [PERSON 3]} \\
&\text{[PERSON NULL]}
\end{align*}
\]
Unification and the Earley Parser

- Employ constraints to restrict addition to chart
- Actually pretty straightforward
Unification and the Earley Parser

- Employ constraints to restrict addition to chart
 - Actually pretty straightforward
 - Augment rules with feature structure
Unification and the Earley Parser

- Employ constraints to restrict addition to chart
- Actually pretty straightforward
 - Augment rules with feature structure
 - Augment state (chart entries) with DAG
 - Prediction adds DAG from rule
 - Completion applies unification (on copies)
 - Adds entry only if current DAG is NOT subsumed
Conclusion

- Features allow encoding of constraints
 - Enables compact representation of rules
 - Supports natural generalizations

- Unification ensures compatibility of features
 - Integrates easily with existing parsing mech.

- Many unification-based grammatical theories
Unification Parsing

- Abstracts over categories
 - $S \rightarrow NP \; VP \Rightarrow$
 - $X_0 \rightarrow X_1 \; X_2; \; <X_0 \; cat> = S; \; <X_1 \; cat> = NP;$
 - $<X_2 \; cat> = VP$
 - Conjunction:
 - $X_0 \rightarrow X_1 \; and \; X_2; \; <X_1 \; cat> = <X_2 \; cat>;$
 - $<X_0 \; cat> = <X_1 \; cat>$

- Issue: Completer depends on categories

- Solution: Completer looks for DAGs which unify with the just-completed state's DAG
Extensions

- Types and inheritance
 - Issue: generalization across feature structures
 - E.g. many variants of agreement
 - More or less specific: 3rd vs sg vs 3rdsg
 - Approach: Type hierarchy
 - Simple atomic types match literally
 - Multiple inheritance hierarchy
 - Unification of subtypes is most general type that is more specific than two input types
 - Complex types encode legal features, etc