
Dependency Parsing &
Feature-based Parsing

Ling571
Deep Processing Techniques for NLP

February 2, 2015

Roadmap
�  Dependency parsing

�  Graph-based dependency parsing
�  Maximum spanning tree

�  CLE Algorithm

�  Learning weights

�  Feature-based parsing
�  Motivation
�  Features
�  Unification

Dependency Parse Example
�  They hid the letter on the shelf

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

�  Where do scores come from?
�  Weights on dependency edges by machine learning
�  Learned from large dependency treebank

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

�  Where do scores come from?
�  Weights on dependency edges by machine learning
�  Learned from large dependency treebank

�  Where are the grammar rules?

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

�  Where do scores come from?
�  Weights on dependency edges by machine learning
�  Learned from large dependency treebank

�  Where are the grammar rules?
�  There aren’t any; data-driven processing

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse

�  Edges: Directed edges between all words
�  + Edges from ROOT to all words

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse

�  Edges: Directed edges between all words
�  + Edges from ROOT to all words

�  Identify maximum spanning tree
�  Tree s.t. all nodes are connected

�  Select such tree with highest weight

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse
�  Edges: Directed edges between all words

�  + Edges from ROOT to all words

�  Identify maximum spanning tree
�  Tree s.t. all nodes are connected
�  Select such tree with highest weight
�  Arc-factored model: Weights depend on end nodes & link

�  Weight of tree is sum of participating arcs

Initial Tree

•  Sentence: John saw Mary (McDonald et al, 2005)
•  All words connected; ROOT only has outgoing arcs

Initial Tree

•  Sentence: John saw Mary (McDonald et al, 2005)
•  All words connected; ROOT only has outgoing arcs

•  Goal: Remove arcs to create a tree covering all words
•  Resulting tree is dependency parse

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-

Edmonds algorithm for MST (CLE)

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-

Edmonds algorithm for MST (CLE)

�  Sketch of algorithm:
�  For each node, greedily select incoming arc with max w
�  If the resulting set of arcs forms a tree, this is the MST.

�  If not, there must be a cycle.

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-

Edmonds algorithm for MST (CLE)

�  Sketch of algorithm:
�  For each node, greedily select incoming arc with max w
�  If the resulting set of arcs forms a tree, this is the MST.

�  If not, there must be a cycle.
�  “Contract” the cycle: Treat it as a single vertex

�  Recalculate weights into/out of the new vertex

�  Recursively do MST algorithm on resulting graph

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-Edmonds

algorithm for MST (CLE)

�  Sketch of algorithm:
�  For each node, greedily select incoming arc with max w
�  If the resulting set of arcs forms a tree, this is the MST.
�  If not, there must be a cycle.

�  “Contract” the cycle: Treat it as a single vertex
�  Recalculate weights into/out of the new vertex
�  Recursively do MST algorithm on resulting graph

�  Running time: naïve: O(n3); Tarjan: O(n2)
�  Applicable to non-projective graphs

Initial Tree

CLE: Step 1
�  Find maximum incoming arcs

CLE: Step 1
�  Find maximum incoming arcs

�  Is the result a tree?

CLE: Step 1
�  Find maximum incoming arcs

�  Is the result a tree?
�  No

�  Is there a cycle?

CLE: Step 1
�  Find maximum incoming arcs

�  Is the result a tree?
�  No

�  Is there a cycle?
�  Yes, John/saw

CLE: Step 2
�  Since there’s a cycle:

�  Contract cycle & reweight

�  John+saw as single vertex

CLE: Step 2
�  Since there’s a cycle:

�  Contract cycle & reweight

�  John+saw as single vertex

�  Calculate weights in & out as:
�  Maximum based on internal arcs

�  and original nodes

�  Recurse

Calculating Graph

CLE: Recursive Step
�  In new graph, find graph of

�  Max weight incoming arc for each word

CLE: Recursive Step
�  In new graph, find graph of

�  Max weight incoming arc for each word

�  Is it a tree?

CLE: Recursive Step
�  In new graph, find graph of

�  Max weight incoming arc for each word

�  Is it a tree? Yes!
�  MST, but must recover internal arcs è parse

CLE: Recovering Graph
�  Found maximum spanning tree

�  Need to ‘pop’ collapsed nodes

�  Expand “ROOT à John+saw” = 40

CLE: Recovering Graph
�  Found maximum spanning tree

�  Need to ‘pop’ collapsed nodes

�  Expand “ROOT à John+saw” = 40

�  MST and complete dependency parse

Learning Weights
�  Weights for arc-factored model learned from corpus

�  Weights learned for tuple (wi,wj,l)

Learning Weights
�  Weights for arc-factored model learned from corpus

�  Weights learned for tuple (wi,wj,l)

�  McDonald et al, 2005 employed discriminative ML
�  Perceptron algorithm or large margin variant

Learning Weights
�  Weights for arc-factored model learned from corpus

�  Weights learned for tuple (wi,L,wj)

�  McDonald et al, 2005 employed discriminative ML
�  Perceptron algorithm or large margin variant

�  Operates on vector of local features

Features for Learning Weights
�  Simple categorical features for (wi,L,wj) including:

�  Identity of wi (or char 5-gram prefix), POS of wi

�  Identity of wj (or char 5-gram prefix), POS of wj
�  Label of L, direction of L

�  Sequence of POS tags b/t wi,wj
�  Number of words b/t wi,wj
�  POS tag of wi-1,POS tag of wi+1

�  POS tag of wj-1, POS tag of wj+1

�  Features conjoined with direction of attachment
and distance b/t words

Dependency Parsing
�  Dependency grammars:

�  Compactly represent pred-arg structure

�  Lexicalized, localized
�  Natural handling of flexible word order

�  Dependency parsing:
�  Conversion to phrase structure trees

�  Graph-based parsing (MST), efficient non-proj O(n2)
�  Transition-based parser

�  MALTparser: very efficient O(n)
�  Optimizes local decisions based on many rich features

Features

Roadmap
�  Features: Motivation

�  Constraint & compactness

�  Features
�  Definitions & representations

�  Unification

�  Application of features in the grammar
�  Agreement, subcategorization

�  Parsing with features & unification
�  Augmenting the Earley parser, unification parsing

�  Extensions: Types, inheritance, etc

�  Conclusion

Constraints & Compactness
�  Constraints in grammar

�  S à NP VP
�  They run.

�  He runs.

Constraints & Compactness
�  Constraints in grammar

�  S à NP VP
�  They run.

�  He runs.

�  But…
�  *They runs

�  *He run

�  *He disappeared the flight

Constraints & Compactness
�  Constraints in grammar

�  S à NP VP
�  They run.

�  He runs.

�  But…
�  *They runs

�  *He run

�  *He disappeared the flight

�  Violate agreement (number), subcategorization

Enforcing Constraints
�  Enforcing constraints

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  Sà NPsg3p VPsg3p,

�  Sà NPpl3p VPpl3p,

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  Sà NPsg3p VPsg3p,

�  Sà NPpl3p VPpl3p,

�  Subcategorization:
�  VPà Vtrans NP,

�  VP à Vintrans,

�  VP à Vditrans NP NP

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  Sà NPsg3p VPsg3p,

�  S à NPpl3p VPpl3p,

�  Subcategorization:
�  VP à Vtrans NP,

�  VP à Vintrans,

�  VP à Vditrans NP NP

�  Explosive!, loses key generalizations

Why features?
� Need compact, general constraints

�  S à NP VP

Why features?
� Need compact, general constraints

�  S à NP VP
�  Only if NP and VP agree

Why features?
� Need compact, general constraints

�  S à NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?

Why features?
� Need compact, general constraints

�  S à NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?
�  Decompose into elementary features that must

be consistent
�  E.g. Agreement

Why features?
� Need compact, general constraints

�  S à NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?
�  Decompose into elementary features that must

be consistent
�  E.g. Agreement

�  Number, person, gender, etc

Why features?
�  Need compact, general constraints

�  S à NP VP
�  Only if NP and VP agree

�  How can we describe agreement, subcat?
�  Decompose into elementary features that must be

consistent
�  E.g. Agreement

�  Number, person, gender, etc

�  Augment CF rules with feature constraints
�  Develop mechanism to enforce consistency
�  Elegant, compact, rich representation

Feature Representations
�  Fundamentally, Attribute-Value pairs

�  Values may be symbols or feature structures
�  Feature path: list of features in structure to value

�  “Reentrant feature structures”: share some struct

�  Represented as
�  Attribute-value matrix (AVM), or

�  Directed acyclic graph (DAG)

AVM

NUMBER PL

PERSON 3

NUMBER PL

PERSON 3

CAT NP

NUMBER PL

PERSON 3

CAT NP

AGREEMENT

NUMBER PL

PERSON 3

CAT S

HEAD AGREEM’T

NUMBER PL

PERSON 3

1

SUBJECT AGREEMENT 1

Unification
�  Two key roles:

Unification
�  Two key roles:

�  Merge compatible feature structures

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if
�  Feature structures are identical

�  Result in same structure

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if
�  Feature structures are identical

�  Result in same structure

�  Feature structures match where both have values,
differ in missing or underspecified
�  Resulting structure incorporates constraints of both

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

�  A subsumes C; B subsumes C; B,A don’t subsume
�  Partial order on f.s.

Unification Examples
�  Identical

�  [Number SG] U [Number SG]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3] = [Number SG]
�  [Person 3]
�  [Number SG] U [Number PL]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3] = [Number SG]
�  [Person 3]

�  Mismatched
�  [Number SG] U [Number PL] à Fails!

More Unification Examples
AGREEMENT [1]

SUBJECT AGREEMENT [1]

SUBJECT AGREEMENT
PERSON 3
NUMBER SG

U

=

SUBJECT AGREEMENT [1]
PERSON 3
NUMBER SG

AGREEMENT [1]

Features in CFGs:
Agreement

�  Goal:
�  Support agreement of NP/VP, Det Nominal

�  Approach:
�  Augment CFG rules with features
�  Employ head features

�  Each phrase: VP, NP has head
�  Head: child that provides features to phrase

�  Associates grammatical role with word

�  VP – V; NP – Nom, etc

Agreement with Heads and
Features

VP à Verb NP
<VP HEAD> = <Verb HEAD>

NP à Det Nominal
<NP HEAD> = <Nominal HEAD>
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT>

Nominal à Noun
<Nominal HEAD> = <Noun HEAD>

Noun à flights
<Noun HEAD AGREEMENT NUMBER> = PL

Verb à serves
<Verb HEAD AGREEMENT NUMBER> = SG
<Verb HEAD AGREEMENT PERSON> = 3

Feature Applications
�  Subcategorization:

�  Verb-Argument constraints
�  Number, type, characteristics of args (e.g. animate)

�  Also adjectives, nouns

�  Long distance dependencies
�  E.g. filler-gap relations in wh-questions, rel

Implementing Unification
�  Data Structure:

�  Extension of the DAG representation

�  Each f.s. has a content field and a pointer field
�  If pointer field is null, content field has the f.s.

�  If pointer field is non-null, it points to actual f.s.

NUMBER
 SG

PERSON
 3

Implementing Unification: II
�  Algorithm:

�  Operates on pairs of feature structures
�  Order independent, destructive

�  If fs1 is null, point to fs2
�  If fs2 is null, point to fs1

�  If both are identical, point fs1 to fs2, return fs2
�  Subsequent updates will update both

�  If non-identical atomic values, fail!

Implementing Unification:
III

�  If non-identical, complex structures
�  Recursively traverse all features of fs2

�  If feature in fs2 is missing in fs1
�  Add to fs1 with value null

�  If all unify, point fs2 to fs1 and return fs1

Example
AGREEMENT [1] NUMBER SG

SUBJECT AGREEMENT [1]

SUBJECT AGREEMENT PERSON 3

U

[AGREEMENT [1]] U [AGREEMENT [PERSON 3]]

[NUMBER SG] U [PERSON 3]

[NUMBER SG] U [PERSON 3]
[PERSON NULL]

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
� 

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
�  Augment rules with feature structure

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
�  Augment rules with feature structure

�  Augment state (chart entries) with DAG
�  Prediction adds DAG from rule

�  Completion applies unification (on copies)
�  Adds entry only if current DAG is NOT subsumed

Conclusion
�  Features allow encoding of constraints

�  Enables compact representation of rules
�  Supports natural generalizations

�  Unification ensures compatibility of features
�  Integrates easily with existing parsing mech.

�  Many unification-based grammatical theories

Unification Parsing
�  Abstracts over categories

�  S-> NP VP =>
�  X0 -> X1 X2; <X0 cat> = S; <X1 cat>=NP;
�  <X2 cat>=VP

�  Conjunction:
�  X0->X1 and X2; <X1 cat> =<X2 cat>;
�  <X0 cat>=<X1 cat>

�  Issue: Completer depends on categories

�  Solution: Completer looks for DAGs which unify
with the just-completed state’s DAG

Extensions
�  Types and inheritance

�  Issue: generalization across feature structures
�  E.g. many variants of agreement

�  More or less specific: 3rd vs sg vs 3rdsg

�  Approach: Type hierarchy
�  Simple atomic types match literally

�  Multiple inheritance hierarchy
�  Unification of subtypes is most general type that is more

specific than two input types

�  Complex types encode legal features, etc

