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Features in CFGs: 
Agreement 

�  Goal:  
�  Support agreement of  NP/VP, Det Nominal 

�  Approach: 
�  Augment CFG rules with features 
�  Employ head features 

�  Each phrase: VP, NP has head 
�  Head: child that provides features to phrase 

�  Associates grammatical role with word  

�  VP – V; NP – Nom, etc 
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Parsing with Features 
�  >>> cp = load_parser('grammars/book_grammars/

feat0.fcfg’)  

�  >>> for tree in cp.parse(tokens):  
�  ... print(tree) 

�  (S[] (NP[NUM='sg']  
�  (PropN[NUM='sg'] Kim))  
�  (VP[NUM='sg', TENSE='pres'] 

�   (TV[NUM='sg', TENSE='pres'] likes) 

�   (NP[NUM='pl'] (N[NUM='pl'] children)))) 



Feature Applications 
�  Subcategorization: 

�  Verb-Argument constraints 
�  Number, type, characteristics of  args (e.g. animate) 

�  Also adjectives, nouns 

�  Long distance dependencies 
�  E.g. filler-gap relations in wh-questions, rel 



Unification and the Earley 
Parser 

�  Employ constraints to restrict addition to chart 

�  Actually pretty straightforward 
�  Augment rules with feature structure 

�  Augment state (chart entries) with DAG 
�  Prediction adds DAG from rule 

�  Completion applies unification (on copies) 
�  Adds entry only if  current DAG is NOT subsumed  
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�  Pros: 
�  Simple, requires little modification 

�  Cons: 
�  Wasted effort 
�  Builds many partial parses that can’t unify 

�  Integrate unification in parse construction 



Parsing, Unification, & 
Earley 

�  Augment existing Earley parser for unification 
�  Fairly straightforward 

�  Modify representations: 
�  Augment CFG rules with constraints  

�  Use constraints to create feature structure as DAG 

�  Add DAG to state representation 
�  E.g., S -> � NP VP, [0,0],[],Dag 



Integrating Unification 
�  Main change: Completer 

�  Advances � in rules where next constituent matches a 
just-completed constituent 

�  Now, unifies Dag from completed constituent  with 
the part of  the feature structure in rules advanced 
�  If  fails, no new entry in chart 

�  Second change: 
�  Only add state if  NOT subsumed by states in chart 



Notes on Features 
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Feature Grammar in NLTK 
�  NLTK supports feature-based grammars 

�  Includes ways of  associating features with CFG rules 

�  Includes readers for feature grammars 
�  .fcfg files 

�  Includes parsers  
�  Nltk.parse.FeatureEarleyChartParser 



Feature Structures 
�  >>> fs1 =  nltk.FeatStruct(“[NUM=‘pl’]”) 
�  >>> print fs1 
�  [NUM=‘pl’] 

�  >>> print fs1[‘NUM’] 
�  pl 

�  More complex structure 
�  >>> fs2 = nltk.FeatStruct(“[POS=‘N’, 

�                                            AGR=[NUM=‘pl’,PER=3]]”) 



Reentrant Feature 
Structures 

�  First instance 
�  Parenthesized integer: (1) 

�  Subsequent instances: 
�  ‘Pointer’: -> (1) 

�  >>> print nltk.FeatStruct("[A='a', B=(1)[C='c'], D->(1)]” 

�  [ A  =  ‘a’               ] 
�  [ B  = (1)  [ C = ‘c’]] 
�  [ D -> (1)               ]  



Augmenting Grammars 
�  Attach feature information to non-terminals, on 

�  N[AGR=[NUM='pl']] -> 'students’ 
�  N[AGR=[NUM=’sg']] -> 'student’ 

�  So far, all values are literal or reentrant 
�  Variables allow generalization: ?a 

�  Allows underspecification, e.g. Det[GEN=?a] 

�  NP[AGR=?a] -> Det[AGR=?a] N[AGR=?a] 



Mechanics 
�  >>> fs3 = nltk.FeatStruct(NUM=‘pl’,PER=3) 

�  >>> fs4 = nltk.FeatStruct(NUM=‘pl’) 

�  >>> print fs4.unify(fs3) 

�  [NUM = ‘pl’] 

�  [PER  =  3  ] 



Morphosyntactic Features 
�  Grammatical feature that influences morphological 

or syntactic behavior  
�  English: 

�  Number:   
�  Dog, dogs 

�  Person: 
�  Am; are; is 

�  Case: 
�  I – me; he – him; etc 

�  Countability: 
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�  ?Colorless green ideas sleep furiously. 



Semantic Features 
�  Many proposed: 

�  Animacy: +/- 

�  Natural gender: masculine, feminine, neuter 
�  Human: +/- 

�  Adult: +/- 
�  Liquid: +/- 
�  Etc. 

�  The milk spilled. 
�  ?The cat spilled. 
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Summary 
�  Features  

�  Enable compact representation of  grammatical 
constraints 

�  Capture basic linguistic patterns 

�  Unification 
�  Creates and maintains consistency over features 

�  Integration with parsing allows filtering of  ill-
formed analyses  
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