Feature-Based
Grammar

Ling571
Deep Processing Techniques for NLP
February 4, 2015

Features in CFGs:
Agreement

® Goal:
® Support agreement of NP/VPE, Det Nominal

® Approach:
® Augment CFG rules with features

® Employ head features

® Each phrase: VP, NP has head
® Head: child that provides features to phrase

® Associates grammatical role with word
e VP -V; NP - Nom, etc

Simple Feature Grammars
e S->NPVP

Simple Feature Grammars
e S -> NP[NUM=?n] VP[NUM=7n]
® NP -> N

Simple Feature Grammars
e S -> NP[NUM=?n] VP[NUM=7n]
e NP[NUM=?n]-> N[NUM=?n]
® NP-> PropN

- -

Simple Feature Grammars
e S -> NP[NUM=?n] VP[NUM=7n]
e NP[NUM=?n] -> N[NUM=?n]

e NP[NUM=7?n] -> PropN[NUM=7n]
® NP-> Det N

Simple Feature Grammars
S -> NP[NUM=?n] VP[NUM=7n]

NP[NUM=?n] -> N[NUM=7n]

NP[NUM=7n] -> PropN[NUM=7n]

NP[NUM=?n] -> Det{fNUM=?n] N[NUM=?n]

Det-> 'this' | 'every’

Simple Feature Grammars
* S -> NP[NUM=?n] VP[NUM=7n]
* NP[NUM=?n] -> N[NUM=7n]
e NP[NUM=7?n] -> PropN[NUM=7n]
* NP[NUM=7?n] -> Det[NUM=?n] N[NUM=7n]
® Det[NUM=sg] -> 'this' | 'every’

® Det-> 'these' | "all’

Simple Feature Grammars
e S -> NP[NUM=?n] VP[NUM=7n]
e NP[NUM=?n]-> N[NUM=?n]
e NP[NUM=7?n] -> PropN[NUM=7n]

e NP[NUM=?n] -> Det[NUM=7?n] N[NUM=7n]
® Det[NUM=sg] -> 'this' | 'every’
® Det[NUM=pl] -> 'these' | 'all’

® N->'dog' | 'girl' | 'car’ | ‘child’

Simple Feature Grammars
e S -> NP[NUM=?n] VP[NUM=7n]
* NP[NUM=7?n] -> N[NUM=7n]
e NP[NUM=?n] -> PropN[NUM=7n]
* NP[NUM=7?n] -> Det[NUM=?n] NINUM=7n]
e Det[NUM=sg] -> 'this' | 'every’
e Det[NUM=pl] -> 'these' | "all’
* N[NUM=sg] -> 'dog' | 'girl’ | 'car’ | 'child’

® N[NUM=pl] -> 'dogs' | 'girls’ | 'cars' | 'children’

Simple Feature Grammars
e S -> NP[NUM=?n] VP[NUM=7n]
* NP[NUM=7?n] -> N[NUM=7n]
e NP[NUM=?n] -> PropN[NUM=7n]
* NP[NUM=7?n] -> Det[NUM=?n] NINUM=7n]
e Det[NUM=sg] -> 'this' | 'every’
e Det[NUM=pl] -> 'these' | "all’
* N[NUM=sg] -> 'dog' | 'girl’ | 'car’ | 'child’

® N->'dogs' | 'girls' | 'cars’ | ‘children’

Parsing with Features

® >>> cp = load_parser('grammars/book_grammars/
featO.fcfg’)

® >>> for tree in cp.parse(tokens):
® .. print(tree)

° (S[](NP[NUM='sg']
® (PropN[NUM='sg'] Kim))
e (VP[NUM='sg', TENSE="pres']
® (TVINUM='sg', TENSE="pres'] likes)
o (NPINUM="pl'] (NINUM="pl'] children))))

= o —~—

Feature Applications

® Subcategorization:
® \erb-Argument constraints

®* Number, type, characteristics of args (e.g. animate)
® Also adjectives, nouns

® |Long distance dependencies
e E. g filler-gap relations in wh-questions, rel

Unification and the Earley
Parser

® Employ constraints to restrict addition to chart

® Actually pretty straightforward
® Augment rules with feature structure
e Augment state (chart entries) with DAG
® Prediction adds DAG from rule

® Completion applies unification (on copies)
e Adds entry only if current DAG is NOT subsumed

Parsing with Features

® One strategy:
® Parse as usual
® Test completed parses for unification constraints

Parsing with Features

® One strategy:
® Parse as usual
® Test completed parses for unification constraints

® Pros:
e Simple, requires little modification

Parsing with Features

® One strategy:
® Parse as usual
® Test completed parses for unification constraints

® Pros:
e Simple, requires little modification

e Cons:
® \Wasted effort
® Builds many partial parses that can’t unify

Parsing with Features

One strategy:
® Parse as usual
® Test completed parses for unification constraints

Pros:
e Simple, requires little modification

Cons:
o \Wasted effort

® Builds many partial parses that can’t unify

Integrate unification in parse construction

Parsing, Unification, &
Earley

® Augment existing Earley parser for unification
® Fairly straightforward

®* Modify representations:

® Augment CFG rules with constraints
® Use constraints to create feature structure as DAG

e Add DAG to state representation
e E.g.,S->«NPVP[0,0],[],Dag

Integrating Unification

® Main change: Completer

® Advances ¢ in rules where next constituent matches a
just-completed constituent

® Now, unifies Dag from completed constituent with
the part of the feature structure in rules advanced

® |f fails, no new entry in chart

® Second change:
® Only add state if NOT subsumed by states in chart

Notes on Features

Ling 571
Deep Techniques for NLP
February 4, 2015

—

Feature Grammar in NLTK

® NLTK supports feature-based grammars
® |ncludes ways of associating features with CFG rules

® |ncludes readers for feature grammars
® fcfg files

® |ncludes parsers
® Nltk.parse.FeatureEarleyChartParser

Feature Structures

>>> fs] = nltk.FeatStruct(“[NUM="pl’]")
>>> print fs1

INUM="pl’]

>>> print fs1['NUM’]

pl

More complex structure
e >>> fs? = nltk.FeatStruct(“[POS="N’,
® AGR=[NUM="‘pl’,PER=3]]")

Reentrant Feature
Structures

® First instance
® Parenthesized integer: (1)

® Subsequent instances:
® ‘Pointer’: -> (1)

® >>> print nltk.FeatStruct("[A="a’, B=(1)[C='c'], D->(1)]”
e [A =1]
B (DR RC s clll
RRED > (1)]

Augmenting Grammars

e Attach feature information to non-terminals, on

e N[AGR=[NUM="pl']] -> 'students’
e N[AGR=[NUM=’sg']] -> 'student’

e So far, all values are literal or reentrant

® Variables allow generalization: ?a
® Allows underspecification, e.g. Det[GEN=?a]
e NP[AGR=?a] -> Det[AGR=?a] N[AGR="a]

Mechanics
® >>> fs3 = nltk.FeatStruct(NUM="pl’,PER=3)

® >>> fs4 = nltk.FeatStruct(NUM="pl’")

® >>> print fs4.unify(fs3)
* [NUM = ‘pl’]
® [PER = 3]

Morphosyntactic Features

® Grammatical feature that influences morphological
or syntactic behavior
® English:
® Number:
® Dog, dogs
® Person:
® Am; are; is
® Case:
® | —me; he —him; etc
® Countability:

Semantic Features

® Grammatical features that influence
semantic(meaning) behavior of associated units

e E.g.:

Semantic Features

® Grammatical features that influence
semantic(meaning) behavior of associated units

e E.g.:
® ?The rocks slept.

Semantic Features

® Grammatical features that influence
semantic(meaning) behavior of associated units

e E.g.:
® ?The rocks slept.

® 7Colorless green ideas sleep furiously.

Semantic Features

® Many proposed:

® Animacy: +/-

® Natural gender: masculine, feminine, neuter

® Human: +/-
o Adult: +/-
e |iquid: +/-
® Fic.
o
o

The milk spilled.

?The cat spilled.

Examples

The climber hiked for six hours.
The climber hiked on Saturday.
The climber reached the summit on Saturday.

*The climber reached the summit for six hours.

Contrast;

Examples

® The climber hiked for six hours.
® The climber hiked on Saturday.
® The climber reached the summit on Saturday.

® *The climber reached the summit for six hours.

® Contrast:
® Achievement vs activity

Semantic features &
Parsing

® Can filter some classes of ambiguity

® Old men and women slept.
® (Old men) and (women) slept.
® (Old (men and women)) slept.

® Sleeping people and books lie flat.
® (Sleeping people) and (books) lie flat.
® (Sleeping (people and books))lie flat.

Semantic features &
Parsing

® Can filter some classes of ambiguity

® Old men and women slept.
® (Old men) and (women) slept.
® (Old (men and women)) slept.

® Sleeping people and books lie flat.
® (Sleeping people) and (books) lie flat.
e *(Sleeping (people and books))lie flat.

Summary

® Features

® Enable compact representation of grammatical
constraints

® (Capture basic linguistic patterns

e Unification
® Creates and maintains consistency over features

® |ntegration with parsing allows filtering of ill-
formed analyses

Unification Example

cat S
voice active Grammar entry for sentence
cat NP
t
agen Ij number [4]
ocess I_Z[[cat VB
Pr number [4]
patient E[cat NP]
‘subject [
pattern |verb 2
object [3]

Unification Example

cat NP
cat DT Grammar entry for NP

spec]| number [3]

_deﬁnite a

cat NN
eac U number []
number [3]
definite [2

attern first -

P second [2]

Unification Example

cat DT
definite yes
number SG
form “the”

—

| exical entries

cat DT
definite yes
number PL
form “these”

Unification Example

Unifying a noun phrase with a determiner

cat NP

cat DT
spec [l number [3]

:deﬁnite E[: 'cat DT y

cat NN definite yes
head Izl]number EI] - number PL
number [3] _form “these"_
definite [4]

first 1]
pattern I:secon g EI]

cat

number
_deﬁnite

Unification Example

DT

Unifying NP with Determiner

cat

DT

definite yes

number

form

PL

“thesell -

cat

DT

definite yes

number

form

PL

“thesell -

Unification Example

Result of unification

cat

spec

head

number
definite

pattern

NP

—

cat
number
definite
form

[

cat
number
PL
yes
first
[second

|

Z

DT
PL
yes
“these”

NN
PL

