HW #4
Probabilistic Parsing

- Goals:
 - Learn about PCFGs
 - Implement PCKY
 - Analyze parsing evaluation
 - Assess improvements to PCFG parsing
Tasks

- Train a PCFG
 - Estimate rule probabilities from treebank
 - Treebank is already in CNF
 - More ATIS data from Penn Treebank

- Build PCKY parser
 - Modify (your) existing CKY implementation
Tasks

- **Evaluation:**
 - Evaluate your parser using standard metric
 - Parseval implemented as ‘evalb’
 - Provided set of ATIS test sentences

- **Improvement:**
 - Improve your parser in some way:
 - Coverage, accuracy, speed
 - Evaluate your new parser
Improvement Possibilities

- Coverage:
 - Some test sentences won’t parse as is!
 - Lexical gaps (aka out-of-vocabulary tokens)
 - Remember to model the probabilities, too

- Better context modeling:
 - E.g. parent annotation

- Better efficiency:
 - E.g. heuristic filtering, beam search
Treebank Format

- Adapted from Penn Treebank Format

- Rules simplified:
 - Removed traces and other null elements
 - Removed complex tags
 - Reformatted POS tags as non-terminals
Reading the Parses

- POS unary collapse:
 - (NP_NNP Ontario)
 - was
 - (NP (NNP Ontario))

- Binarization:
 - VP → VP_PRIME PP; VP_PRIME → VB PP
 - Was
 - VP → VB PP PP
Notes

- You may use any programming language
 - As long as it runs on the cluster

- You may work in teams on this assignment
 - If you do so, indicate in write-up, describe who did what

- You may use NLTK classes to manipulate trees, rules
 - E.g. nltk.Tree
 - Own code for probability computation, PCKY

- Unparseable sentences
 - Please make sure your parser doesn’t crash
 - It’s fine to return zero parses for a sentence, though