HW #4

Probabilistic Parsing

- Goals:
 - Learn about PCFGs
 - Implement PCKY
 - Analyze parsing evaluation
 - Assess improvements to PCFG parsing

Tasks

- Train a PCFG
 - Estimate rule probabilities from treebank
 - Treebank is already in CNF
 - More ATIS data from Penn Treebank
- Build PCKY parser
 - Modify (your) existing CKY implementation

Tasks

- Evaluation:
 - Evaluate your parser using standard metric
 - Parseval implemented as 'evalb'
 - Provided set of ATIS test sentences
- Improvement:
 - Improve your parser in some way:
 - Coverage, accuracy, speed
 - Evaluate your new parser

Improvement Possibilities

- Coverage:
 - Some test sentences won't parse as is!
 - Lexical gaps (aka out-of-vocabulary tokens)
 - Remember to model the probabilities, too
- Better context modeling:
 - E.g. parent annotation
- Better efficiency:
 - E.g. heuristic filtering, beam search

Treebank Format

- Adapted from Penn Treebank Format
 - Rules simplified:
 - Removed traces and other null elements
 - Removed complex tags
 - Reformatted POS tags as non-terminals

Reading the Parses

- POS unary collapse:
 - (NP_NNP Ontario)
 - was
 - (NP (NNP Ontario))
- Binarization:
 - VP → VP_PRIME PP; VP_PRIME → VB PP
 - Was
 - VP → VB PP PP

Notes

- You may use any programming language
 - As long as it runs on the cluster
- You may work in teams on this assignment
 - If you do so, indicate in write-up, describe who did what
- You may use NLTK classes to manipulate trees, rules
 - E.g. nltk.Tree
 - Own code for probability computation, PCKY
- Unparseable sentences
 - Please make sure your parser doesn't crash
 - It's fine to return zero parses for a sentence, though