Computational Semantics

Deep Processing for NLP Ling 571 February 8, 2016

Roadmap

- Motivation: Dialog Systems
- Key challenges
- Meaning representation
 - Representational requirements
 - First-order logic
 - Syntax & Semantics
 - Representing compositional meaning

Dialogue Systems

- User: What do I have on Thursday?
- Parse:
 - (S
 - (Q-WH-Obj
 - (Whwd What)
 - (Aux do)
 - (NP (Pron I))
 - (VP/NP (V have)
 - (NP/NP *t*)
 - (PP (Prep on)
 - (NP (N Thursday))))))

Dialogue Systems

- Parser:
 - Yes, it's grammatical!
 - Here's the structure!

• System: Great, but what am I supposed to DO?!

Need to associate meaning with structure

Dialogue Systems

- (S
 (Q-WH-Obj Action: check; cal: USER; Date:Thursday
 (Whwd What)
 (Aux do)
 (NP (Pron I)) Cal: USER
- (VP/NP (V have)
- (NP/NP *t*)
- (PP (Prep on)
- (NP (N Thursday))))) Date: Thursday

Natural Language

• Syntax: Determine the structure of natural language input

 Semantics: Determine the meaning of natural language input

Tasks for Semantics

- Semantic interpretation required for many tasks
 - Answering questions
 - Following instructions in a software manual
 - Following a recipe
- Requires more than phonology, morphology, syntax
- Must link linguistic elements to world knowledge

Semantics is Complex

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - The protests became bloody.
 - The protests had been peaceful.
 - Crowds oppose the government.
 - Some support Mubarak.
 - There was a confrontation between two groups.
 - Anti-government crowds are not Mubarak supporters.
 - Etc..

Challenges in Semantics

- Semantic representation:
 - What is the appropriate formal language to express propositions in linguistic input?
 - E.g. predicate calculus
 - $\exists x.(dog(x) \land disappear(x))$
- Entailment:
 - What are all the valid conclusions that can be drawn from an utterance?
 - 'Lincoln was assassinated' entails 'Lincoln is dead.'

Challenges in Semantics

- Reference: How do linguistic expressions link to objects/concepts in the real world?
 - 'the dog', 'the President', 'the Superbowl'
- Compositionality: How can we derive the meaning of a unit from its parts?
 - How do syntactic structure and semantic composition relate?
 - 'rubber duck' vs 'rubber chicken'
 - 'kick the bucket'

Tasks in Computational Semantics

- Computational semantics aims to extract, interpret, and reason about the meaning of NL utterances, and includes:
 - Defining a **meaning representation**
 - Developing techniques for **semantic analysis**, to convert NL strings to meaning representations
 - Developing methods for reasoning about these representations and performing inference from them

Complexity of Computational Semantics

- Requires:
 - Knowledge of language: words, syntax, relationships b/t structure and meaning, composition procedures
 - Knowledge of the world: what are the objects that we refer to, how do they relate, what are their properties?
 - Reasoning: Given a representation and a world, what new conclusions bits of meaning can we infer?
- Effectively Al-complete
 - Need representation, reasoning, world model, etc

Representing Meaning

Meaning Representations

- All consist of structures from set of symbols
 - Representational vocabulary
- Symbol structures correspond to:
 - Objects
 - Properties of objects
 - Relations among objects
- Can be viewed as:
 - Representation of meaning of linguistic input
 - Representation of state of world
- Here we focus on **literal** meaning

Representational Requirements

- Verifiability
 - Can compare representation of sentence to KB model
- Unambiguous representations
 - Semantic representation itself is unambiguous
- Canonical Form
 - Alternate expressions of same meaning map to same rep
- Inference and Variables
 - Way to draw valid conclusions from semantics and KB
- Expressiveness
 - Represent any natural language utterance

Meaning Structure of Language

- Human languages
 - Display basic predicate-argument structure
 - Employ variables
 - Employ quantifiers
 - Exhibit a (partially) compositional semantics

Predicate-Argument Structure

- Represent concepts and relationships
- Words behave like predicates:
 - Verbs, Adj, Adv:
 - Eat(John,VegetarianFood); Red(Ball)
- Some words behave like arguments:
 - Nouns: Eat(John,VegetarianFood); Red(Ball)
- Subcategorization frames indicate:
 - Number, Syntactic category, order of args

First-Order Logic

- Meaning representation:
 - Provides sound computational basis for verifiability, inference, expressiveness
- Supports determination of propositional truth
- Supports compositionality of meaning
- Supports inference
- Supports generalization through variables

First-Order Logic

- FOL terms:
 - Constants: specific objects in world;
 - A, B, Maharani
 - Refer to exactly one object; objects referred to by many
 - Functions: concepts refer to objects, e.g. Frasca's loc
 - LocationOf(Frasca)
 - Refer to objects, avoid using constants
 - Variables:
 - Х, е

FOL Representation

• Predicates:

- Relations among objects
 - Maharani serves vegetarian food. →
 - Serves(Maharani, VegetarianFood)
 - Maharani is a restaurant. →
 - Restaurant(Maharani)

• Logical connectives:

- Allow compositionality of meaning
 - Maharani serves vegetarian food and is cheap.
 - Serves(Maharani, VegetarianFood) Λ Cheap(Maharani)

Variables & Quantifiers

- Variables refer to:
 - Anonymous objects
 - All objects in some collection
- Quantifiers:
 - **∃**: existential quantifier: "there exists"
 - Indefinite NP, one such object for truth
 - A cheap restaurant that serves vegetarian food
 ∃x Restaurant(x) ∧ Serves(x, VegetarianFood) ∧ Cheap(x)
 - ∀: universal quantifier: "for all"
 - All vegetarian restaurants serve vegetarian food.

 $\forall x Vegetarian \operatorname{Restaurant}(x) \Rightarrow Serves(x, VegetarianFood)$

FOL Syntax Summary

\rightarrow	AtomicFormula				
	Formula Connective Formula				
Ì	Quantifier Variable, Formula				
İ	¬ Formula				
İ	(Formula)				
\rightarrow	Predicate(Term,)				
\rightarrow	Function(Term,)				
	Constant				
Ì	Variable				
\rightarrow	$\land \lor \Rightarrow$				
\rightarrow	EIV				
\rightarrow	A VegetarianFood Maharani				
\rightarrow	$x \mid y \mid \cdots$				
\rightarrow	Serves Near ···				
\rightarrow	$LocationOf \mid CuisineOf \mid \cdots$				
	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$				

A

Compositionality

- **Compositionality**: The meaning of a complex expression is a function of the meaning of its parts and the rules for their combination.
 - Formal languages are compositional.
 - Natural language meaning is largely, though not fully, compositional, but much more complex.
 - How can we derive things like loves(John, Mary) from John, loves(x,y), and Mary?

Lambda Expressions

- Lambda (λ) notation: (Church, 1940)
 - Just like lambda in Python, Scheme, etc
 - Allows abstraction over FOL formulas
 - Supports compositionality
 - Form: λ + variable + FOL expression
 - E.g. $\lambda x.P(x)$ "Function taking x to P(x)"

• $\lambda \times P(x)(A) \rightarrow P(A)$

λ-Reduction

- λ -reduction: Apply λ -expression to logical term
 - Binds formal parameter to term

 $\lambda x.P(x)$ $\lambda x.P(x)(A)$ P(A)

• Equivalent to function application

Nested λ - Reduction

 Lambda expression as body of another λx.λy.Near(x,y)
 λx.λy.Near(x,y)(Bacaro)
 λy.Near(Bacaro,y)
 λy.Near(Bacaro,y)
 λy.Near(Bacaro,y)(Centro)
 Near(Bacaro,Centro)

Lambda Expressions

- Currying;
 - Converting multi-argument predicates to sequence of single argument predicates
 - Why?
 - Incrementally accumulates multiple arguments spread over different parts of parse tree

Semantics of Meaning Rep.

- Model-theoretic approach:
 - FOL terms (objects): denote elements in a domain
 - Atomic formulas are:
 - If properties, sets of domain elements
 - If relations, sets of tuples of elements
- Formulas based on logical operators:

Р	Q	$\neg P$	$P \wedge Q$	$\pmb{P} \lor \pmb{Q}$	$P \Rightarrow Q$
False	False	True	False	False	True
False	True	True	False	True	True
True	False	False	False	True	False
True	True	False	True	True	True

Compositionality provided by lambda expressions

Inference

- Standard AI-type logical inference procedures
 - Modus Ponens
 - Forward-chaining, Backward Chaining
 - Abduction
 - Resolution
 - Etc,...
- We'll assume we have a prover

Representing Events

- Initially, single predicate with some arguments
 - Serves(Maharani,IndianFood)
 - Assume # ags = # elements in subcategorization frame
- Example:
 - I ate.
 - I ate a turkey sandwich.
 - I ate a turkey sandwich at my desk.
 - I ate at my desk.
 - I ate lunch.
 - I ate a turkey sandwich for lunch.
 - I ate a turkey sandwich for lunch at my desk.

Events

- Issues?
 - Arity how can we deal with different #s of arguments?

Neo-Davidsonian Events

- Neo-Davidsonian representation:
 - Distill event to single argument for event itself
 - Everything else is additional predication

 $\exists eEating(e) \land Eater(e, Spea \ker) \land Eaten(e, TS) \land Meal(e, Lunch) \land Location(e, Desk)$

- Pros:
 - No fixed argument structure
 - Dynamically add predicates as necessary
 - No extra roles
 - Logical connections can be derived

Meaning Representation for Computational Semantics

- Requirements:
 - Verifiability, Unambiguous representation, Canonical Form, Inference, Variables, Expressiveness
- Solution:
 - First-Order Logic
 - Structure
 - Semantics
 - Event Representation
- Next: Semantic Analysis
 - Deriving a meaning representation for an input

Summary

- First-order logic can be used as a meaning representation language for natural language
- Principle of compositionality: the meaning of a complex expression is a function of the meaning of its parts
- λ -expressions can be used to compute meaning representations from syntactic trees based on the principle of compositionality
- In the next section, we will look at a syntax-driven approach to semantic analysis in more detail

Syntax-driven Semantic Analysis

- Key: Principle of Compositionality
 - Meaning of sentence from meanings of parts
 - E.g. groupings and relations from syntax
- Question: Integration?
- Solution 1: Pipeline
 - Feed parse tree and sentence to semantic unit
 - Sub-Q: Ambiguity:
 - Approach: Keep all analyses, later stages will select

Simple Example

• AyCaramba serves meat.

∃e Serving(e) ∧ Server(e, AyCaramba) ∧ Served(e, Meat)

Rule-to-Rule

- Issue:
 - How do we know which pieces of the semantics link to what part of the analysis?
 - Need detailed information about sentence, parse tree
 - Infinitely many sentences & parse trees
 - Semantic mapping function per parse tree → intractable
- Solution:
 - Tie semantics to finite components of grammar
 - E.g. rules & lexicon
 - Augment grammar rules with semantic info
 - Aka "attachments"
 - Specify how RHS elements compose to LHS

Semantic Attachments

- Basic structure:
 - $A \rightarrow a_1....a_n \{f(a_j.sem,...a_k.sem)\}$
 - A.sem
- Language for semantic attachments
 - Arbitrary programming language fragments?
 - Arbitrary power but hard to map to logical form
 - No obvious relation between syntactic, semantic elements
 - Lambda calculus
 - Extends First Order Predicate Calculus (FOPC) with function application
 - Feature-based model + unification
- Focus on lambda calculus approach

Semantic Analysis Approach

- Semantic attachments:
 - Each CFG production gets semantic attachment
- Phrase semantics is function of SA of children
 - Complex functions parametrized
 - E.g. Verb \rightarrow closed
 - Need unary predicate
 - One arg: subject, not yet available

Semantic Analysis Example

- Basic model:
 - Neo-Davidsonian event-style model
 - Complex quantification
- Example:
 - Every restaurant closed.
 - (S (NP (Det every) (Nom (Noun restaurant)))
 - (VP (V closed)))
 - Target representation:

 $\forall x \operatorname{Restaurant}(x) \Rightarrow \exists e Closed(e) \land ClosedThing(e, x)$

Defining Representation

- Idea: Every restaurant = $\forall x \operatorname{Re} staurant(x)$
 - Good enough?
 - No: roughly 'everything is a restaurant'
 - Saying something about all restaurants nuclear scope
- Solution: Dummy predicate $\forall x \operatorname{Re} staurant(x) \Rightarrow Q(x)$
 - Good enough?
 - No: no way to get Q(x) from elsewhere in sentence
- Solution: Lambda

 $\lambda Q. \forall x \operatorname{Restaurant}(x) \Rightarrow Q(x)$

Creating Attachments

- Noun \rightarrow restaurant { λ x.Restaurant(x)}
- Nom → Noun
- Det \rightarrow Every
- NP \rightarrow Det Nom

{ Noun.sem }

 $\{\lambda P.\lambda Q. \forall x P(x) \Rightarrow Q(x)\}$

{ Det.sem(Nom.sem) }

 $\lambda P.\lambda Q. \forall x P(x) \Rightarrow Q(x)(\lambda x. \text{Re staurant}(x))$ $\lambda P.\lambda Q. \forall x P(x) \Rightarrow Q(x)(\lambda y. \text{Re staurant}(y))$ $\lambda Q. \forall x \lambda y. \text{Re staurant}(y)(x) \Rightarrow Q(x)$ $\lambda Q. \forall x \text{Re staurant}(x) \Rightarrow Q(x)$

Full Representation

- Verb \rightarrow close $\{\lambda x. \exists eClosed(e) \land ClosedThing(e, x)\}$
- $VP \rightarrow Verb$ { Verb.sem }
- $S \rightarrow NP VP$ { NP.sem(VP.sem) }

 $\lambda Q. \forall x \operatorname{Restaurant}(x) \Rightarrow Q(x)(\lambda y. \exists eClosed(e) \land ClosedThing(e, y))$ $\forall x \operatorname{Restaurant}(x) \Rightarrow \lambda y. \exists eClosed(e) \land ClosedThing(e, y)(x)$ $\forall x \operatorname{Restaurant}(x) \Rightarrow \exists eClosed(e) \land ClosedThing(e, x)$