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Roadmap 
�  Motivation: Dialog Systems 

�  Key challenges 

�  Meaning representation 
�  Representational requirements 

�  First-order logic 
�  Syntax & Semantics 

�  Representing compositional meaning 



Dialogue Systems 
�  User: What do I have on Thursday? 

�  Parse: 
�  (S  
�       (Q-WH-Obj 
�            (Whwd What) 
�            (Aux     do   ) 
�            (NP   (Pron I)) 
�            (VP/NP  (V   have) 
�                          (NP/NP *t*) 
�                          (PP   (Prep           on) 
�                                   (NP  (N Thursday)))))) 



Dialogue Systems 
�  Parser: 

�  Yes, it’s grammatical! 

�  Here’s the structure! 

�  System: Great, but what am I supposed to DO?! 

�  Need to associate meaning with structure 



Dialogue Systems 
�  (S  
�       (Q-WH-Obj            Action: check; cal: USER; Date:Thursday 
�            (Whwd What) 

�            (Aux     do   ) 
�            (NP   (Pron I))                   Cal: USER             

�            (VP/NP  (V   have)                               
�                          (NP/NP *t*) 
�                          (PP   (Prep           on)         

�                                   (NP  (N Thursday))))))  Date: Thursday 



Natural Language 
�  Syntax: Determine the structure of  natural 

language input 

�  Semantics: Determine the meaning of  natural 
language input 



Tasks for Semantics 
�  Semantic interpretation required for many tasks 

�  Answering questions 

�  Following instructions in a software manual 
�  Following a recipe 

�  Requires more than phonology, morphology, syntax 

�  Must link linguistic elements to world knowledge 



Semantics is Complex 
�  Sentences have many entailments, presuppositions 

�  Instead, the protests turned bloody, as anti-government 
crowds were confronted by what appeared to be a 
coordinated group of Mubarak supporters.  
�  The protests became bloody. 
�  The protests had been peaceful. 
�  Crowds oppose the government. 
�  Some support Mubarak. 
�  There was a confrontation between two groups. 
�  Anti-government crowds are not Mubarak supporters. 
�  Etc.. 



Challenges in Semantics 
�  Semantic representation: 

�  What is the appropriate formal language to express 
propositions in linguistic input? 
�  E.g. predicate calculus 

�  ∃x.(dog(x) ∧ disappear(x)) 

�  Entailment: 
�  What are all the valid conclusions that can be drawn 

from an utterance? 
�  ‘Lincoln was assassinated’ entails ‘Lincoln is dead.’ 



Challenges in Semantics 
�  Reference:  How do linguistic expressions link to 

objects/concepts in the real world? 
�  ‘the dog’ , ‘the President’, ‘the Superbowl’ 

�  Compositionality: How can we derive the meaning 
of  a unit from its parts? 
�  How do syntactic structure and semantic composition 

relate? 
�  ‘rubber duck’ vs ‘rubber chicken’  

�  ‘kick the bucket’ 



Tasks in Computational 
Semantics 

�  Computational semantics aims to extract, interpret, 
and reason about the meaning of  NL utterances, 
and includes: 
�  Defining a meaning representation 

�  Developing techniques for semantic analysis, to 
convert NL strings to meaning representations 

�  Developing methods for reasoning about these 
representations and performing inference from them 



Complexity of  
Computational Semantics 

�  Requires: 
�  Knowledge of  language: words,  syntax, relationships b/t 

structure and meaning, composition procedures 

�  Knowledge of  the world: what are the objects that we refer 
to, how do they relate, what are their properties? 

�  Reasoning: Given a representation and a world, what new 
conclusions – bits of  meaning – can we infer? 

�  Effectively AI-complete 
�  Need representation, reasoning, world model, etc 



Representing Meaning 

First-order Logic 

Semantic Network 

Conceptual 
Dependency 

Frame-Based 



Meaning Representations 
�  All consist of  structures from set of  symbols 

�  Representational vocabulary 

�  Symbol structures correspond to: 
�  Objects 
�  Properties of  objects 
�  Relations among objects  

�  Can be viewed as: 
�  Representation of  meaning of  linguistic input 
�  Representation of  state of  world 

�  Here we focus on literal meaning 



Representational 
Requirements 

�  Verifiability 
�  Can compare representation of  sentence to KB model 

�  Unambiguous representations 
�  Semantic representation itself  is unambiguous 

�  Canonical Form 
�  Alternate expressions of  same meaning map to same rep 

�  Inference and Variables 
�  Way to draw valid conclusions from semantics and KB 

�  Expressiveness 
�  Represent any natural language utterance 



Meaning Structure of  
Language 

�  Human languages 
�  Display basic predicate-argument structure 

�  Employ variables 

�  Employ quantifiers 

�  Exhibit a (partially) compositional semantics 



Predicate-Argument 
Structure 

�  Represent concepts and relationships 

�  Words behave like predicates: 
�  Verbs, Adj, Adv: 

�   Eat(John,VegetarianFood); Red(Ball) 

�  Some words behave like arguments: 
�  Nouns: Eat(John,VegetarianFood); Red(Ball) 

�  Subcategorization frames indicate: 
�  Number, Syntactic category, order of  args 



First-Order Logic 
�  Meaning representation: 

�  Provides sound computational basis for verifiability, 
inference, expressiveness 

�  Supports determination of  propositional truth 

�  Supports compositionality of  meaning 

�  Supports inference 

�  Supports generalization through variables 



First-Order Logic 
�  FOL terms: 

�  Constants: specific objects in world; 
�   A, B, Maharani 
�  Refer to exactly one object; objects referred to by many 

�  Functions: concepts refer to objects, e.g. Frasca’s loc 
�  LocationOf(Frasca) 
�  Refer to objects, avoid using constants 

�  Variables: 
�   x, e 



FOL Representation 
�  Predicates:  

�  Relations among objects 
�  Maharani serves vegetarian food. è 

�  Serves(Maharani, VegetarianFood) 

�  Maharani is a restaurant. è 

�  Restaurant(Maharani) 

�  Logical connectives:  
�  Allow compositionality of  meaning 

�  Maharani serves vegetarian food and is cheap. 

�  Serves(Maharani,VegetarianFood) ∧ Cheap(Maharani) 



Variables &  Quantifiers 
�  Variables refer to: 

�  Anonymous objects 

�  All objects in some collection 

�  Quantifiers: 
�     : existential quantifier: “there exists” 

�  Indefinite NP, one such object for truth 

�  A cheap restaurant that serves vegetarian food  

�     : universal quantifier: “for all” 
�  All vegetarian restaurants serve vegetarian food. 

∃

∀
∃xRe staurant(x)∧Serves(x,VegetarianFood)∧Cheap(x)

∀xVegetarianRe staurant(x)⇒ Serves(x,VegetarianFood)



FOL Syntax Summary 



Compositionality 
�  Compositionality:  The meaning of  a complex 

expression is a function of  the meaning of  its parts 
and the rules for their combination. 

�  Formal languages are compositional. 

�  Natural language meaning is largely, though not fully, 
compositional, but much more complex. 
�  How can we derive things like loves(John, Mary) from 

John, loves(x,y), and Mary?  



Lambda Expressions 
�  Lambda (λ) notation: (Church, 1940) 

�  Just like lambda in Python, Scheme, etc 

�  Allows abstraction over FOL formulas 
�  Supports compositionality 

�  Form: λ + variable + FOL expression 
�  E.g. λx.P(x)     “Function taking x to P(x)” 

�  λx.P(x) (A)    à P(A) 



λ-Reduction 
�  λ-reduction: Apply λ-expression to logical term 

�  Binds formal parameter to term 

�  Equivalent to function application  

λx.P(x)
λx.P(x)(A)
P(A)



Nested λ-Reduction 
�  Lambda expression as body of  another 

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Bacaro)
λy.Near(Bacaro, y)
λy.Near(Bacaro, y)(Centro)
Near(Bacaro,Centro)



Lambda Expressions 
�  Currying; 

�  Converting multi-argument predicates to sequence of  
single argument predicates 

�  Why? 
�  Incrementally  accumulates multiple arguments spread 

over different parts of  parse tree 



Semantics of  Meaning Rep. 
�  Model-theoretic approach: 

�  FOL terms (objects): denote elements in a domain 
�  Atomic formulas are: 

�  If  properties, sets of  domain elements 
�  If  relations, sets of  tuples of  elements 

�  Formulas based on logical operators: 

 

�  Compositionality provided by lambda expressions 



Inference 
�  Standard AI-type logical inference procedures 

�  Modus Ponens 

�  Forward-chaining, Backward Chaining 
�  Abduction 

�  Resolution 
�  Etc,.. 

�  We’ll assume we have a prover 



Representing Events 
�  Initially, single predicate with some arguments 

�  Serves(Maharani,IndianFood) 
�  Assume # ags = # elements in subcategorization frame 

�  Example: 
�  I ate. 
�  I ate a turkey sandwich. 
�  I ate a turkey sandwich at my desk. 
�  I ate at my desk. 
�  I ate lunch. 
�  I ate a turkey sandwich for lunch. 
�  I ate a turkey sandwich for lunch at my desk.   



Events 
�  Issues? 

�  Arity – how can we deal with different #s of  arguments? 



Neo-Davidsonian Events 
�  Neo-Davidsonian representation: 

�  Distill event to single argument for event itself  

�  Everything else is additional predication 

�  Pros: 
�  No fixed argument structure 

�  Dynamically add predicates as necessary 

�  No extra roles 
�  Logical connections can be derived 

∃eEating(e)∧Eater(e,Speaker)∧Eaten(e,TS)∧Meal(e,Lunch)∧Location(e,Desk)



Meaning Representation for 
Computational Semantics 

�  Requirements: 
�  Verifiability, Unambiguous representation, Canonical 

Form, Inference, Variables, Expressiveness 

�  Solution: 
�  First-Order Logic 

�  Structure 
�  Semantics 
�  Event Representation 

�  Next: Semantic Analysis 
�  Deriving a meaning representation for an input 



Summary  
�  First-order logic can be used as a meaning 

representation language for natural language 

�  Principle of  compositionality: the meaning of  a 
complex expression is a function of  the meaning of  
its parts 

�  λ-expressions can be used to compute meaning  
representations from syntactic trees based on the 
principle of  compositionality 

�  In the next section, we will look at a syntax-driven 
approach to semantic analysis in more detail 



Syntax-driven Semantic Analysis 
�  Key: Principle of  Compositionality 

�  Meaning of  sentence from meanings of  parts 
�  E.g. groupings and relations from syntax 

�  Question: Integration? 

�  Solution 1: Pipeline   
�  Feed parse tree and sentence to semantic unit 

�  Sub-Q: Ambiguity: 
�  Approach: Keep all analyses, later stages will select 

 



Simple Example 
�  AyCaramba serves meat. 

∃e Serving(e)∧Server(e,AyCaramba)∧Served(e,Meat)

S 

NP                   VP 

Prop-N            V               NP 

N 

AyCaramba   serves      meat. 



Rule-to-Rule 
�  Issue:  

�  How do we know which pieces of  the semantics link to 
what part of  the analysis? 

�  Need detailed information about sentence, parse tree 
�  Infinitely many sentences & parse trees 
�  Semantic mapping function per parse tree è intractable 

�  Solution:  
�  Tie semantics to finite components of  grammar 

�  E.g. rules & lexicon 
�  Augment grammar rules with semantic info 

�  Aka “attachments” 
�  Specify how RHS elements compose to LHS 



Semantic Attachments 
�  Basic structure: 

�  Aà a1….an   {f(aj.sem,…ak.sem)} 
�  A.sem 

�  Language for semantic attachments 
�  Arbitrary programming language fragments? 

�  Arbitrary power but hard to map to logical form 
�  No obvious relation between syntactic, semantic elements 

�  Lambda calculus 
�  Extends First Order Predicate Calculus (FOPC) with function 

application 
�  Feature-based model + unification 

�  Focus on lambda calculus approach 



Semantic Analysis 
Approach 

�  Semantic attachments: 
�  Each CFG production gets semantic attachment 

�  Phrase semantics is function of  SA of  children 
�  Complex functions parametrized 

�  E.g. Verb à closed 
�  Need unary predicate  

�  One arg: subject, not yet available 



Semantic Analysis Example 
�  Basic model: 

�  Neo-Davidsonian event-style model 

�  Complex quantification 

�  Example: 
�  Every restaurant closed. 

�  (S (NP (Det every) (Nom (Noun restaurant))) 
�      (VP (V closed))) 
�  Target representation: 

∀xRe staurant(x)⇒∃eClosed(e)∧ClosedThing(e, x)



Defining Representation 
�  Idea: Every restaurant =  

�  Good enough? 
�  No: roughly ‘everything is a restaurant’ 

�  Saying something about all restaurants – nuclear scope 

�  Solution: Dummy predicate 

�  Good enough? 
�  No: no way to get Q(x) from elsewhere in sentence   

�  Solution: Lambda 

∀xRe staurant(x)

∀xRe staurant(x)⇒Q(x)

λQ.∀xRe staurant(x)⇒Q(x)



Creating Attachments 
�  Noun à restaurant   {λx.Restaurant(x)} 

�  Nom à Noun    { Noun.sem } 

�  Det à Every    {        } 

�  NP à Det Nom   { Det.sem(Nom.sem) } 

λP.λQ.∀xP(x)⇒Q(x)



λP.λQ.∀xP(x)⇒Q(x)(λx.Re staurant(x))
λP.λQ.∀xP(x)⇒Q(x)(λy.Re staurant(y))
λQ.∀xλy.Re staurant(y)(x)⇒Q(x)
λQ.∀xRe staurant(x)⇒Q(x)



Full Representation 
�  Verb à close   {              } 

�  VP à Verb   { Verb.sem } 

�  S à NP VP   { NP.sem(VP.sem) } 

λx.∃eClosed(e)∧ClosedThing(e, x)

λQ.∀xRe staurant(x)⇒Q(x)(λy.∃eClosed(e)∧ClosedThing(e, y))
∀xRe staurant(x)⇒ λy.∃eClosed(e)∧ClosedThing(e, y)(x)
∀xRe staurant(x)⇒∃eClosed(e)∧ClosedThing(e, x)


