
Computational
Semantics
Deep Processing for NLP

Ling 571
February 8, 2016

Roadmap
�  Motivation: Dialog Systems

�  Key challenges

�  Meaning representation
�  Representational requirements

�  First-order logic
�  Syntax & Semantics

�  Representing compositional meaning

Dialogue Systems
�  User: What do I have on Thursday?

�  Parse:
�  (S
�  (Q-WH-Obj
�  (Whwd What)
�  (Aux do)
�  (NP (Pron I))
�  (VP/NP (V have)
�  (NP/NP *t*)
�  (PP (Prep on)
�  (NP (N Thursday))))))

Dialogue Systems
�  Parser:

�  Yes, it’s grammatical!

�  Here’s the structure!

�  System: Great, but what am I supposed to DO?!

�  Need to associate meaning with structure

Dialogue Systems
�  (S
�  (Q-WH-Obj Action: check; cal: USER; Date:Thursday
�  (Whwd What)

�  (Aux do)
�  (NP (Pron I)) Cal: USER

�  (VP/NP (V have)
�  (NP/NP *t*)
�  (PP (Prep on)

�  (NP (N Thursday)))))) Date: Thursday

Natural Language
�  Syntax: Determine the structure of natural

language input

�  Semantics: Determine the meaning of natural
language input

Tasks for Semantics
�  Semantic interpretation required for many tasks

�  Answering questions

�  Following instructions in a software manual
�  Following a recipe

�  Requires more than phonology, morphology, syntax

�  Must link linguistic elements to world knowledge

Semantics is Complex
�  Sentences have many entailments, presuppositions

�  Instead, the protests turned bloody, as anti-government
crowds were confronted by what appeared to be a
coordinated group of Mubarak supporters.
�  The protests became bloody.
�  The protests had been peaceful.
�  Crowds oppose the government.
�  Some support Mubarak.
�  There was a confrontation between two groups.
�  Anti-government crowds are not Mubarak supporters.
�  Etc..

Challenges in Semantics
�  Semantic representation:

�  What is the appropriate formal language to express
propositions in linguistic input?
�  E.g. predicate calculus

�  ∃x.(dog(x) ∧ disappear(x))

�  Entailment:
�  What are all the valid conclusions that can be drawn

from an utterance?
�  ‘Lincoln was assassinated’ entails ‘Lincoln is dead.’

Challenges in Semantics
�  Reference: How do linguistic expressions link to

objects/concepts in the real world?
�  ‘the dog’ , ‘the President’, ‘the Superbowl’

�  Compositionality: How can we derive the meaning
of a unit from its parts?
�  How do syntactic structure and semantic composition

relate?
�  ‘rubber duck’ vs ‘rubber chicken’

�  ‘kick the bucket’

Tasks in Computational
Semantics

�  Computational semantics aims to extract, interpret,
and reason about the meaning of NL utterances,
and includes:
�  Defining a meaning representation

�  Developing techniques for semantic analysis, to
convert NL strings to meaning representations

�  Developing methods for reasoning about these
representations and performing inference from them

Complexity of
Computational Semantics

�  Requires:
�  Knowledge of language: words, syntax, relationships b/t

structure and meaning, composition procedures

�  Knowledge of the world: what are the objects that we refer
to, how do they relate, what are their properties?

�  Reasoning: Given a representation and a world, what new
conclusions – bits of meaning – can we infer?

�  Effectively AI-complete
�  Need representation, reasoning, world model, etc

Representing Meaning

First-order Logic

Semantic Network

Conceptual
Dependency

Frame-Based

Meaning Representations
�  All consist of structures from set of symbols

�  Representational vocabulary

�  Symbol structures correspond to:
�  Objects
�  Properties of objects
�  Relations among objects

�  Can be viewed as:
�  Representation of meaning of linguistic input
�  Representation of state of world

�  Here we focus on literal meaning

Representational
Requirements

�  Verifiability
�  Can compare representation of sentence to KB model

�  Unambiguous representations
�  Semantic representation itself is unambiguous

�  Canonical Form
�  Alternate expressions of same meaning map to same rep

�  Inference and Variables
�  Way to draw valid conclusions from semantics and KB

�  Expressiveness
�  Represent any natural language utterance

Meaning Structure of
Language

�  Human languages
�  Display basic predicate-argument structure

�  Employ variables

�  Employ quantifiers

�  Exhibit a (partially) compositional semantics

Predicate-Argument
Structure

�  Represent concepts and relationships

�  Words behave like predicates:
�  Verbs, Adj, Adv:

�  Eat(John,VegetarianFood); Red(Ball)

�  Some words behave like arguments:
�  Nouns: Eat(John,VegetarianFood); Red(Ball)

�  Subcategorization frames indicate:
�  Number, Syntactic category, order of args

First-Order Logic
�  Meaning representation:

�  Provides sound computational basis for verifiability,
inference, expressiveness

�  Supports determination of propositional truth

�  Supports compositionality of meaning

�  Supports inference

�  Supports generalization through variables

First-Order Logic
�  FOL terms:

�  Constants: specific objects in world;
�  A, B, Maharani
�  Refer to exactly one object; objects referred to by many

�  Functions: concepts refer to objects, e.g. Frasca’s loc
�  LocationOf(Frasca)
�  Refer to objects, avoid using constants

�  Variables:
�  x, e

FOL Representation
�  Predicates:

�  Relations among objects
�  Maharani serves vegetarian food. è

�  Serves(Maharani, VegetarianFood)

�  Maharani is a restaurant. è

�  Restaurant(Maharani)

�  Logical connectives:
�  Allow compositionality of meaning

�  Maharani serves vegetarian food and is cheap.

�  Serves(Maharani,VegetarianFood) ∧ Cheap(Maharani)

Variables & Quantifiers
�  Variables refer to:

�  Anonymous objects

�  All objects in some collection

�  Quantifiers:
�  : existential quantifier: “there exists”

�  Indefinite NP, one such object for truth

�  A cheap restaurant that serves vegetarian food

�  : universal quantifier: “for all”
�  All vegetarian restaurants serve vegetarian food.

∃

∀
∃xRe staurant(x)∧Serves(x,VegetarianFood)∧Cheap(x)

∀xVegetarianRe staurant(x)⇒ Serves(x,VegetarianFood)

FOL Syntax Summary

Compositionality
�  Compositionality: The meaning of a complex

expression is a function of the meaning of its parts
and the rules for their combination.

�  Formal languages are compositional.

�  Natural language meaning is largely, though not fully,
compositional, but much more complex.
�  How can we derive things like loves(John, Mary) from

John, loves(x,y), and Mary?

Lambda Expressions
�  Lambda (λ) notation: (Church, 1940)

�  Just like lambda in Python, Scheme, etc

�  Allows abstraction over FOL formulas
�  Supports compositionality

�  Form: λ + variable + FOL expression
�  E.g. λx.P(x) “Function taking x to P(x)”

�  λx.P(x) (A) à P(A)

λ-Reduction
�  λ-reduction: Apply λ-expression to logical term

�  Binds formal parameter to term

�  Equivalent to function application

λx.P(x)
λx.P(x)(A)
P(A)

Nested λ-Reduction
�  Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Bacaro)
λy.Near(Bacaro, y)
λy.Near(Bacaro, y)(Centro)
Near(Bacaro,Centro)

Lambda Expressions
�  Currying;

�  Converting multi-argument predicates to sequence of
single argument predicates

�  Why?
�  Incrementally accumulates multiple arguments spread

over different parts of parse tree

Semantics of Meaning Rep.
�  Model-theoretic approach:

�  FOL terms (objects): denote elements in a domain
�  Atomic formulas are:

�  If properties, sets of domain elements
�  If relations, sets of tuples of elements

�  Formulas based on logical operators:

�  Compositionality provided by lambda expressions

Inference
�  Standard AI-type logical inference procedures

�  Modus Ponens

�  Forward-chaining, Backward Chaining
�  Abduction

�  Resolution
�  Etc,..

�  We’ll assume we have a prover

Representing Events
�  Initially, single predicate with some arguments

�  Serves(Maharani,IndianFood)
�  Assume # ags = # elements in subcategorization frame

�  Example:
�  I ate.
�  I ate a turkey sandwich.
�  I ate a turkey sandwich at my desk.
�  I ate at my desk.
�  I ate lunch.
�  I ate a turkey sandwich for lunch.
�  I ate a turkey sandwich for lunch at my desk.

Events
�  Issues?

�  Arity – how can we deal with different #s of arguments?

Neo-Davidsonian Events
�  Neo-Davidsonian representation:

�  Distill event to single argument for event itself

�  Everything else is additional predication

�  Pros:
�  No fixed argument structure

�  Dynamically add predicates as necessary

�  No extra roles
�  Logical connections can be derived

∃eEating(e)∧Eater(e,Speaker)∧Eaten(e,TS)∧Meal(e,Lunch)∧Location(e,Desk)

Meaning Representation for
Computational Semantics

�  Requirements:
�  Verifiability, Unambiguous representation, Canonical

Form, Inference, Variables, Expressiveness

�  Solution:
�  First-Order Logic

�  Structure
�  Semantics
�  Event Representation

�  Next: Semantic Analysis
�  Deriving a meaning representation for an input

Summary
�  First-order logic can be used as a meaning

representation language for natural language

�  Principle of compositionality: the meaning of a
complex expression is a function of the meaning of
its parts

�  λ-expressions can be used to compute meaning
representations from syntactic trees based on the
principle of compositionality

�  In the next section, we will look at a syntax-driven
approach to semantic analysis in more detail

Syntax-driven Semantic Analysis
�  Key: Principle of Compositionality

�  Meaning of sentence from meanings of parts
�  E.g. groupings and relations from syntax

�  Question: Integration?

�  Solution 1: Pipeline
�  Feed parse tree and sentence to semantic unit

�  Sub-Q: Ambiguity:
�  Approach: Keep all analyses, later stages will select

Simple Example
�  AyCaramba serves meat.

∃e Serving(e)∧Server(e,AyCaramba)∧Served(e,Meat)

S

NP VP

Prop-N V NP

N

AyCaramba serves meat.

Rule-to-Rule
�  Issue:

�  How do we know which pieces of the semantics link to
what part of the analysis?

�  Need detailed information about sentence, parse tree
�  Infinitely many sentences & parse trees
�  Semantic mapping function per parse tree è intractable

�  Solution:
�  Tie semantics to finite components of grammar

�  E.g. rules & lexicon
�  Augment grammar rules with semantic info

�  Aka “attachments”
�  Specify how RHS elements compose to LHS

Semantic Attachments
�  Basic structure:

�  Aà a1….an {f(aj.sem,…ak.sem)}
�  A.sem

�  Language for semantic attachments
�  Arbitrary programming language fragments?

�  Arbitrary power but hard to map to logical form
�  No obvious relation between syntactic, semantic elements

�  Lambda calculus
�  Extends First Order Predicate Calculus (FOPC) with function

application
�  Feature-based model + unification

�  Focus on lambda calculus approach

Semantic Analysis
Approach

�  Semantic attachments:
�  Each CFG production gets semantic attachment

�  Phrase semantics is function of SA of children
�  Complex functions parametrized

�  E.g. Verb à closed
�  Need unary predicate

�  One arg: subject, not yet available

Semantic Analysis Example
�  Basic model:

�  Neo-Davidsonian event-style model

�  Complex quantification

�  Example:
�  Every restaurant closed.

�  (S (NP (Det every) (Nom (Noun restaurant)))
�  (VP (V closed)))
�  Target representation:

∀xRe staurant(x)⇒∃eClosed(e)∧ClosedThing(e, x)

Defining Representation
�  Idea: Every restaurant =

�  Good enough?
�  No: roughly ‘everything is a restaurant’

�  Saying something about all restaurants – nuclear scope

�  Solution: Dummy predicate

�  Good enough?
�  No: no way to get Q(x) from elsewhere in sentence

�  Solution: Lambda

∀xRe staurant(x)

∀xRe staurant(x)⇒Q(x)

λQ.∀xRe staurant(x)⇒Q(x)

Creating Attachments
�  Noun à restaurant {λx.Restaurant(x)}

�  Nom à Noun { Noun.sem }

�  Det à Every { }

�  NP à Det Nom { Det.sem(Nom.sem) }

λP.λQ.∀xP(x)⇒Q(x)

λP.λQ.∀xP(x)⇒Q(x)(λx.Re staurant(x))
λP.λQ.∀xP(x)⇒Q(x)(λy.Re staurant(y))
λQ.∀xλy.Re staurant(y)(x)⇒Q(x)
λQ.∀xRe staurant(x)⇒Q(x)

Full Representation
�  Verb à close { }

�  VP à Verb { Verb.sem }

�  S à NP VP { NP.sem(VP.sem) }

λx.∃eClosed(e)∧ClosedThing(e, x)

λQ.∀xRe staurant(x)⇒Q(x)(λy.∃eClosed(e)∧ClosedThing(e, y))
∀xRe staurant(x)⇒ λy.∃eClosed(e)∧ClosedThing(e, y)(x)
∀xRe staurant(x)⇒∃eClosed(e)∧ClosedThing(e, x)

