Discourse: Coreference

Deep Processing Techniques for NLP Ling 571 March 2, 2016

Roadmap

- Coreference
 - Referring expressions
 - Syntactic & semantic constraints
 - Syntactic & semantic preferences
 - Reference resolution:
 - Hobbs Algorithm: Baseline
 - Machine learning approaches
 - Sieve models
 - Challenges

Reference

 Queen Elizabeth set about transforming her husband, King George VI, into <u>a viable monarch</u>. Logue, a renowned speech therapist, was summoned to help the King overcome his <u>speech</u> <u>impediment</u>...

Referring expression: (refexp) Linguistic form that picks out entity in some model

Reference

 Queen Elizabeth set about transforming her husband, King George VI, into <u>a viable monarch</u>. Logue, a renowned speech therapist, was summoned to help the King overcome his <u>speech</u> <u>impediment</u>...

Referring expression: (refexp) Linguistic form that picks out entity in some model That entity is the "referent" When introduces entity, "evokes" it Set up later reference, "antecedent" 2 refexps with same referent "co-refer"

Reference (terminology)

- Queen Elizabeth set about transforming her husband, King George VI, into <u>a viable monarch</u>. Logue, a renowned speech therapist, was summoned to help the King overcome his <u>speech</u> <u>impediment</u>...
- Anaphor:
 - Abbreviated linguistic form interpreted in context
 - Her, his, the King
 - Refers to previously introduced item ("accesses")
 - Referring expression is then anaphoric

Referring Expressions

- Many alternatives:
 - Queen Elizabeth, she, her, the Queen, etc
 - Possible correct forms depend on discourse context
 - E.g. she, her presume prior mention, or presence in world
- Interpretation (and generation) requires:
 - Discourse Model with representations of:
 - Entities referred to in the discourse
 - Relationships of these entities
 - Need way to construct, update model
 - Need way to map refexp to hearer's beliefs

Reference and Model

Reference Resolution

 Queen Elizabeth set about transforming her husband, King George VI, into <u>a viable monarch</u>. Logue, a renowned speech therapist, was summoned to help the King overcome his <u>speech</u> <u>impediment</u>...

Coreference resolution:

Find all expressions referring to same entity, 'corefer' Colors indicate coreferent sets Pronominal anaphora resolution: Find antecedent for given pronoun

Referring Expressions

- Indefinite noun phrases (NPs): e.g. "a cat"
 - Introduces new item to discourse context
- Definite NPs: e.g. "the cat"
 - Refers to item identifiable by hearer in context
 - By verbal, pointing, or environment availability; implicit
- Pronouns: e.g. "he", "she", "it"
 - Refers to item, must be "salient"
- Demonstratives: e.g. "this", "that"
 - Refers to item, sense of distance (literal/figurative)
- Names: e.g. "Miss Woodhouse","IBM"
 - New or old entities

Information Status

- Some expressions (e.g. indef NPs) introduce new info
- Others refer to old referents (e.g. pronouns)
- Theories link form of refexp to given/new status

The givenness hierarchy:					
			uniquely		type
in focus >	activated >	familiar >	identifiable >	referential >	identifiable
{it}	$\left\{\begin{array}{c} that\\ this\\ this\\ this \ N\end{array}\right\}$	{that N}	{the N}	{indef. <i>this</i> N}	$\{a \mathbf{N}\}$

• Accessibility:

TI. . _!____ 1.!.....

• More salient elements easier to call up, can be shorter Correlates with length: more accessible, shorter refexp

Complicating Factors

- Inferrables:
 - Refexp refers to inferentially related entity
 - I bought a car today, but the door had a dent, and the engine was noisy.
 - E.g. car \rightarrow door, engine
- Generics:
 - I want to buy a Mac. They are very stylish.
 - General group evoked by instance.
- Non-referential cases:
 - It's raining.

Syntactic Constraints for Reference Resolution

- Some fairly rigid rules constrain possible referents
- Agreement:
 - Number: Singular/Plural
 - Person: 1st: I,we; 2nd: you; 3rd: he, she, it, they
 - Gender: he vs she vs it

Syntactic & Semantic Constraints

- Binding constraints:
 - Reflexive (x-self): corefers with subject of clause
 - Pronoun/Def. NP: can't corefer with subject of clause

"Selectional restrictions":

- "animate": The cows eat grass.
- "human": The author wrote the book.
- More general: drive: John drives a car....

Syntactic & Semantic Preferences

- Recency: Closer entities are more salient
 - The doctor found an old map in the chest. Jim found an even older map on the shelf. It described an island.
- Grammatical role: Saliency hierarchy of roles
 - e.g. Subj > Object > I. Obj. > Oblique > AdvP
 - Billy Bones went to the bar with Jim Hawkins. He called for a glass of rum. [he = Billy]
 - Jim Hawkins went to the bar with Billy Bones. He called for a glass of rum. [he = Jim]

Syntactic & Semantic Preferences

- Repeated reference: Pronouns more salient
 - Once focused, likely to continue to be focused
 - Billy Bones had been thinking of a glass of rum. He hobbled over to the bar. Jim Hawkins went with him. He called for a glass of rum. [he=Billy]
- Parallelism: Prefer entity in same role
 - Silver went with Jim to the bar. Billy Bones went with him to the inn. [him = Jim]
 - Overrides grammatical role
- Verb roles: "implicit causality", thematic role match,...
 - John telephoned Bill. He lost the laptop. [He=John]
 - John criticized Bill. He lost the laptop. [He=Bill]

Reference Resolution Approaches

Common features

- "Discourse Model"
 - Referents evoked in discourse, available for reference
 - Structure indicating relative salience
- Syntactic & Semantic Constraints
- Syntactic & Semantic Preferences

• Differences:

 Which constraints/preferences? How combine? Rank?

Hobbs' Resolution Algorithm

- Requires:
 - Syntactic parser
 - Gender and number checker
- Input:
 - Pronoun
 - Parse of current and previous sentences
- Captures:
 - Preferences: Recency, grammatical role
 - Constraints: binding theory, gender, person, number

Hobbs Algorithm

Intuition:

- Start with target pronoun
- Climb parse tree to S root
- For each NP or S
 - Do breadth-first, left-to-right search of children
 - Restricted to left of target
 - For each NP, check agreement with target
- Repeat on earlier sentences until matching NP found

Hobbs Algorithm Detail

- Begin at NP immediately dominating pronoun
- Climb tree to NP or S: X=node, p = path
- Traverse branches below X, and left of p: BF, LR
 - If find NP, propose as antecedent
 - If separated from X by NP or S
- Loop: If X highest S in sentence, try previous sentences.
- If X not highest S, climb to next NP or S: X = node
- If X is NP, and p not through X's nominal, propose X
- Traverse branches below X, left of p: BF,LR
 - Propose any NP
- If X is S, traverse branches of X, right of p: BF, LR
 - Do not traverse NP or S; Propose any NP
 - Go to Loop

Hobbs Example

Lyn's mom is a gardener. Craige likes her.

Another Hobbs Example

- The castle in Camelot remained the residence of the King until 536 when he moved it to London.
- What is it?
 - residence

Another Hobbs Example

Hobbs Algorithm

- Results: 88% accuracy ; 90+% intrasentential
 - On perfect, manually parsed sentences
- Useful baseline for evaluating pronominal anaphora
- Issues:
 - Parsing:
 - Not all languages have parsers
 - Parsers are not always accurate
 - Constraints/Preferences:
 - Captures: Binding theory, grammatical role, recency
 - But not: parallelism, repetition, verb semantics, selection

Data-driven Reference Resolution

- Prior approaches: Knowledge-based, hand-crafted
- Data-driven machine learning approach
 - Coreference as classification, clustering, ranking problem
 - Mention-pair model:
 - For each pair NPi,NPj, do they corefer?
 - Cluster to form equivalence classes
 - Entity-mention model
 - For each pair NP_k and cluster C_{i.}, should the NP be in the cluster?
 - Ranking models
 - For each NP_k, and all candidate antecedents, which highest?

NP Coreference Examples

Link all NPs refer to same entity

Queen Elizabeth set about transforming her husband, King George VI, into <u>a viable monarch</u>. Logue, a renowned speech therapist, was summoned to help the King overcome his <u>speech impediment</u>...

Annotated Corpora

- Available shared task corpora
 - MUC-6, MUC-7 (Message Understanding Conference)
 - 60 documents each, newswire, English
 - ACE (Automatic Content Extraction)
 - Originally English newswite
 - Later include Chinese, Arabic; blog, CTS, usenet, etc
- Treebanks
 - English Penn Treebank (Ontonotes)
 - German, Czech, Japanese, Spanish, Catalan, Medline

Feature Engineering

- Other coreference (not pronominal) features
 - String-matching features:
 - Mrs. Clinton <->Clinton
 - Semantic features:
 - Can candidate appear in same role w/same verb?
 - WordNet similarity
 - Wikipedia: broader coverage
 - Lexico-syntactic patterns:
 - E.g. X is a Y

Typical Feature Set

- 25 features per instance: 2NPs, features, class
 - lexical (3)
 - string matching for pronouns, proper names, common nouns
 - grammatical (18)
 - pronoun_1, pronoun_2, demonstrative_2, indefinite_2, ...
 - number, gender, animacy
 - appositive, predicate nominative
 - binding constraints, simple contra-indexing constraints, ...
 - span, maximalnp, ...
 - semantic (2)
 - same WordNet class
 - alias
 - positional (1)
 - distance between the NPs in terms of # of sentences
 - knowledge-based (1)
 - naïve pronoun resolution algorithm

Coreference Evaluation

• Key issues:

- Which NPs are evaluated?
 - Gold standard tagged or
 - Automatically extracted
- How good is the partition?
 - Any cluster-based evaluation could be used (e.g. Kappa)
 - MUC scorer:
 - Link-based: ignores singletons; penalizes large clusters
 - Other measures compensate

Clustering by Classification

• Mention-pair style system:

- For each pair of NPs, classify +/- coreferent
 Any classifier
- Linked pairs form coreferential chains
 - Process candidate pairs from End to Start
 - All mentions of an entity appear in single chain
- F-measure: MUC-6: 62-66%; MUC-7: 60-61%
 - Soon et. al, Cardie and Ng (2002)

Multi-pass Sieve Approach

• Raghunathan et al., 2010

- Key Issues:
 - Limitations of mention-pair classifier approach
 - Local decisions over large number of features
 - Not really transitive
 - Can't exploit global constraints
 - Low precision features may overwhelm less frequent, high precision ones