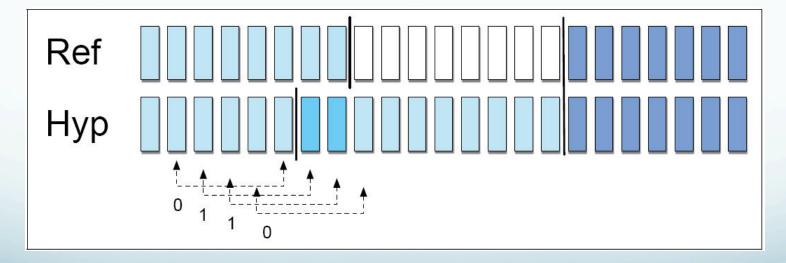

Discourse Structure & Wrap-up: Q-A

Ling571
Deep Processing Techniques for NLP
March 9, 2016


TextTiling Segmentation

- Depth score:
 - Difference between position and adjacent peaks
 - E.g., $(y_{a1}-y_{a2})+(y_{a3}-y_{a2})$

Evaluation

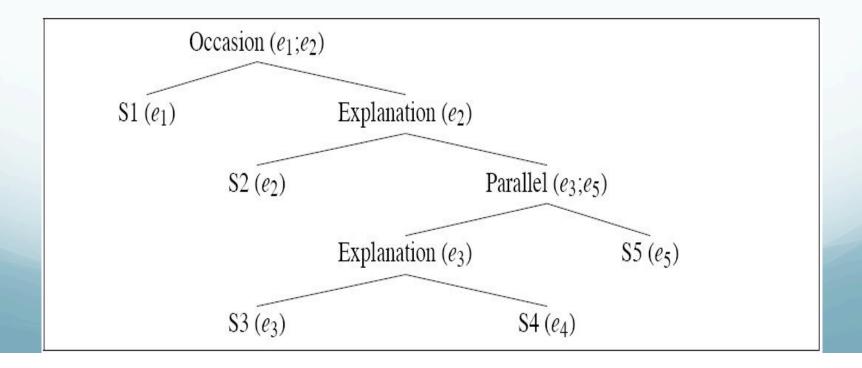
- How about precision/recall/F-measure?
 - Problem: No credit for near-misses
- Alternative model: WindowDiff

WindowDiff(ref, hyp) =
$$\frac{1}{N-k} \sum_{i=1}^{N-k} (|b(ref_i, ref_{i+k}) - b(hyp_i, hyp_{i+k})| \neq 0)$$

Text Coherence

- Cohesion repetition, etc does not imply coherence
- Coherence relations:
 - Possible meaning relations between utts in discourse
 - Examples:
 - **Result:** Infer state of S₀ cause state in S₁
 - The Tin Woodman was caught in the rain. His joints rusted.
 - Explanation: Infer state in S₁ causes state in S₀
 - John hid Bill's car keys. He was drunk.
 - **Elaboration**: Infer same prop. from S_0 and S_1 .
 - Dorothy was from Kansas. She lived in the great Kansas prairie.
 - Pair of locally coherent clauses: discourse segment

Coherence Analysis


S1: John went to the bank to deposit his paycheck.

S2: He then took a train to Bill's car dealership.

S3: He needed to buy a car.

S4: The company he works now isn't near any public transportation.

S5: He also wanted to talk to Bill about their softball league.

Rhetorical Structure Theory

- Mann & Thompson (1987)
- Goal: Identify hierarchical structure of text
 - Cover wide range of TEXT types
 - Language contrasts
 - Relational propositions (intentions)
- Derives from functional relations b/t clauses

RST Parsing

- Learn and apply classifiers for
 - Segmentation and parsing of discourse
- Assign coherence relations between spans
- Create a representation over whole text => parse
- Discourse structure
 - RST trees
 - Fine-grained, hierarchical structure
 - Clause-based units

Penn Discourse Treebank

- PDTB (Prasad et al, 2008)
 - "Theory-neutral" discourse model
 - No stipulation of overall structure, identifies local rels
- Two types of annotation:
 - Explicit: triggered by lexical markers ('but') b/t spans
 - Arg2: syntactically bound to discourse connective, ow Arg1
 - Implicit: Adjacent sentences assumed related
 - Arg1: first sentence in sequence
- Senses/Relations:
 - Comparison, Contingency, Expansion, Temporal
 - Broken down into finer-grained senses too

Shallow Discourse Parsing

- Task:
 - For extended discourse, for each clause/sentence pair in sequence, identify discourse relation, Arg1, Arg2
- Current accuracies (CoNLL15 Shared task):
 - 61% overall
 - Explicit discourse connectives: 91%
 - Non-explicit discourse connectives: 34%

Basic Methodology

- Pipeline:
 - 1. Identify discourse connectives
 - 2. Extract arguments for connectives (Arg1, Arg2)
 - 3. Determine presence/absence of relation in context
 - 4. Predict sense of discourse relation
- Resources: Brown clusters, lexicons, parses
- Approaches:
 - 1,2: Sequence labeling techniques
 - 3,4: Classification (4: multiclass)
 - Some rule-based or most common class

Identifying Relations

- Key source of information:
 - Cue phrases
 - Aka discourse markers, cue words, clue words
 - Although, but, for example, however, yet, with, and....
 - John hid Bill's keys **because** he was drunk.
- Issues:
 - Ambiguity: discourse vs sentential use
 - With its distant orbit, Mars exhibits frigid weather.
 - We can see Mars with a telescope.
 - Ambiguity: cue multiple discourse relations
 - Because: CAUSE/EVIDENCE; But: CONTRAST/CONCESSION
 - Sparsity:
 - Only 15-25% of relations marked by cues

Summary

- Computational discourse:
 - Cohesion and Coherence in extended spans
 - Key tasks:
 - Reference resolution
 - Constraints and preferences
 - Heuristic, learning, and sieve models
 - Discourse structure modeling
 - Linear topic segmentation, RST or shallow discourse parsing
 - Exploiting shallow and deep language processing

Question-Answering: Shallow & Deep Techniques for NLP

Deep Processing Techniques for NLP Ling 571 March 9, 2016

Roadmap

- Question-Answering:
 - Definitions & Motivation
- Basic pipeline:
 - Question processing
 - Retrieval
 - Answering processing
- Shallow processing: Aranea (Lin, Brill)
- Deep processing: LCC (Moldovan, Harabagiu, et al)
- Wrap-up

Why QA?

- Grew out of information retrieval community
- Document retrieval is great, but...
 - Sometimes you don't just want a ranked list of documents
 - Want an answer to a question!
 - Short answer, possibly with supporting context
- People ask questions on the web
 - Web logs:
 - Which English translation of the bible is used in official Catholic liturgies?
 - Who invented surf music?
 - What are the seven wonders of the world?
 - Account for 12-15% of web log queries

Search Engines and Questions

- What do search engines do with questions?
 - Increasingly try to answer questions
 - Especially for wikipedia infobox types of info
 - Backs off to keyword search
- How well does this work?
 - Which English translation of the bible is used in official Catholic liturgies?
 - The official Bible of the Catholic Church is the Vulgate, the Latin version of the ...
 - The original Catholic Bible in English, pre-dating the King James Version (1611). It was translated from the Latin Vulgate, the Church's official Scripture text, by English

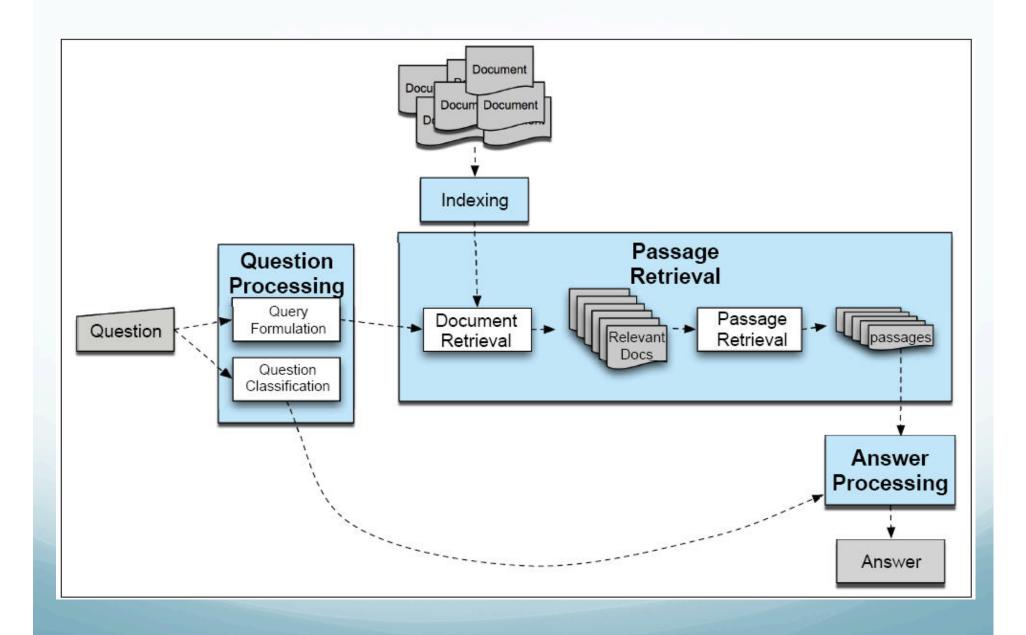
Search Engines & QA

- What is the total population of the ten largest capitals in the US?
 - Rank 1 snippet:
 - The table below lists the *largest* 50 cities in the United States
 - The answer is in the document with a calculator...

Search Engines and QA

- Search for exact question string
 - "Do I need a visa to go to Japan?"
 - Result: Exact match on Yahoo! Answers
 - Find 'Best Answer' and return following chunk
- Works great if the question matches exactly
 - Many websites are building archives
 - What if it doesn't match?
 - 'Question mining' tries to learn paraphrases of questions to get answer

Perspectives on QA


- TREC QA track (~2000---)
 - Initially pure factoid questions, with fixed length answers
 - Based on large collection of fixed documents (news)
 - Increasing complexity: definitions, biographical info, etc
 - Single response
- Reading comprehension (Hirschman et al, 2000---)
 - Think SAT/GRE
 - Short text or article (usually middle school level)
 - Answer questions based on text
 - Also, 'machine reading'
- And, of course, Jeopardy! and Watson

Question Answering (a la TREC)

Question	Answer
Where is the Louvre Museum located?	in Paris, France
What's the abbreviation for limited partnership?	L.P.
What are the names of Odin's ravens?	Huginn and Muninn
What currency is used in China?	the yuan
What kind of nuts are used in marzipan?	almonds
What instrument does Max Roach play?	drums
What's the official language of Algeria?	Arabic
What is the telephone number for the University of	(303)492-1411
Colorado, Boulder?	
How many pounds are there in a stone?	14

Basic Strategy

- Given an indexed document collection, and
- A question:
- Execute the following steps:
 - Query formulation
 - Question classification
 - Passage retrieval
 - Answer processing
 - Evaluation

Query Processing

- Query reformulation
 - Convert question to suitable form for IR
 - E.g. 'stop structure' removal:
 - Delete function words, q-words, even low content verbs
- Question classification
 - Answer type recognition
 - Who → Person; What Canadian city → City
 - What is surf music → Definition
 - Train classifiers to recognize expected answer type
 - Using POS, NE, words, synsets, hyper/hypo-nyms

description	Who was Confucius?
group	What are the major companies that are part of Dow Jones?
ind	Who was the first Russian astronaut to do a spacewalk?
title	What was Queen Victoria's title regarding India?
LOCATION	
city	What's the oldest capital city in the Americas?
country	What country borders the most others?
mountain	What is the highest peak in Africa?
other	What river runs through Liverpool?
state	What states do not have state income tax?
NUMERIC	
code	What is the telephone number for the University of Colorado?
count	About how many soldiers died in World War II?
date	What is the date of Boxing Day?
distance	How long was Mao's 1930s Long March?
money	How much did a McDonald's hamburger cost in 1963?
order	Where does Shanghai rank among world cities in population?
other	What is the population of Mexico?
period	What was the average life expectancy during the Stone Age?
percent	What fraction of a beaver's life is spent swimming?
speed	What is the speed of the Mississippi River?
temp	How fast must a spacecraft travel to escape Earth's gravity?
size	What is the size of Argentina?
weight	How many pounds are there in a stone?

Passage Retrieval

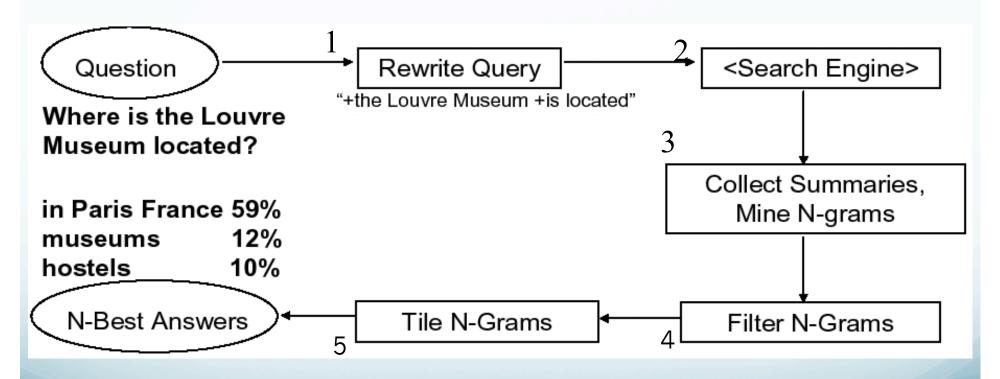
- Why not just perform general information retrieval?
 - Documents too big, non-specific for answers
- Identify shorter, focused spans (e.g., sentences)
 - Filter for correct type: answer type classification
 - Rank passages based on a trained classifier
 - Or, for web search, use result snippets

Answer Processing

- Find the specific answer in the passage
- Pattern extraction-based:
 - Include answer types, regular expressions
 - Can use syntactic/dependency/semantic patterns
 - Leverage large knowledge bases

Pattern	Question	Answer
<ap> such as <qp></qp></ap>	What is autism?	", developmental disorders such as autism"
<qp>, a <ap></ap></qp>	What is a caldera?	"the Long Valley caldera, a volcanic crater 19 miles long"

Evaluation


- Classical:
 - Return ranked list of answer candidates
 - Idea: Correct answer higher in list => higher score
 - Measure: Mean Reciprocal Rank (MRR)
 - For each question,
 - Get reciprocal of rank of first correct answer

• E.g. correct answer is
$$4 = \frac{1}{4}$$

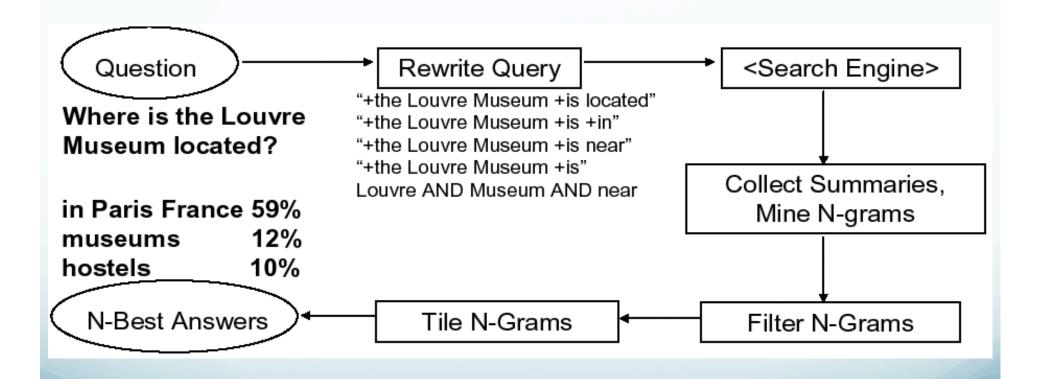
• E.g. correct answer is
$$4 \Rightarrow \frac{1}{4}$$
• None correct $\Rightarrow 0$
• Average over all questions
$$MRR = \frac{\sum_{i=1}^{N} \frac{1}{rank_i}}{N}$$

AskMSR/Aranea (Lin, Brill)

Shallow Processing for QA

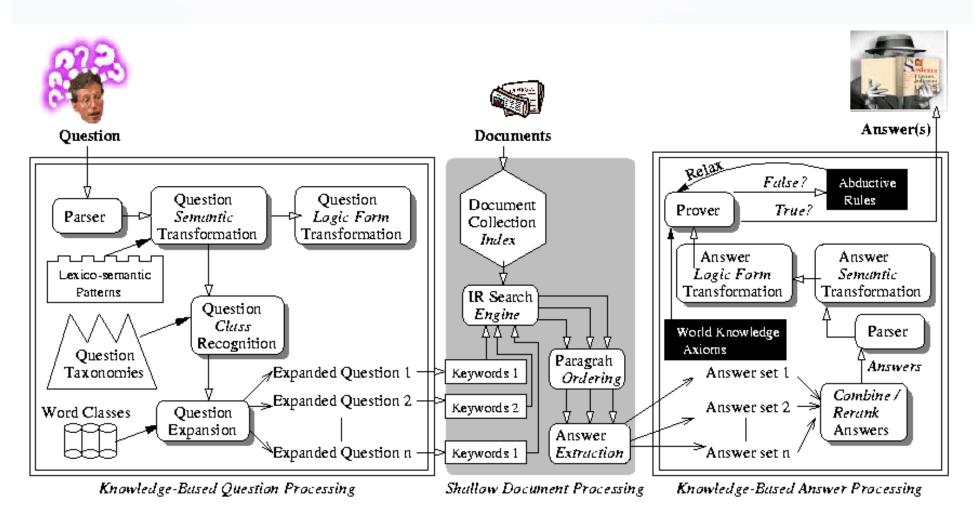
Intuition

- Redundancy is useful!
 - If similar strings appear in many candidate answers, likely to be solution
 - Even if can't find obvious answer strings
- Q: How many times did Bjorn Borg win Wimbledon?
 - Bjorn Borg blah blah blah Wimbledon blah 5 blah
 - Wimbledon blah blah Bjorn Borg blah 37 blah.
 - blah Bjorn Borg blah blah 5 blah blah Wimbledon
 - 5 blah blah Wimbledon blah blah Bjorn Borg.
 - Probably 5


Query Reformulation

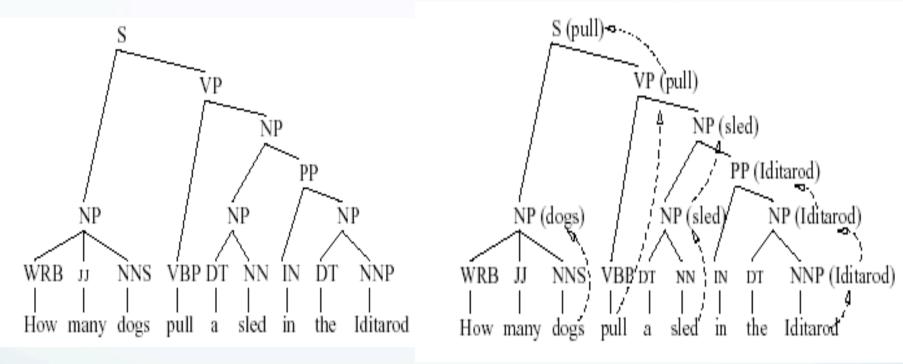
- Identify question type:
 - E.g. Who, When, Where,...
- Create question-type specific rewrite rules:
 - Hypothesis: Wording of question similar to answer
 - For 'where' queries, move 'is' to all possible positions
 - Where is the Louvre Museum located? =>
 - Is the Louvre Museum located
 - The is Louvre Museum located
 - The Louvre Museum is located, .etc.
- Create type-specific answer type (Person, Date, Loc)

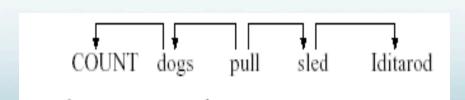
Retrieval, N-gram Mining & Filtering


- Run reformulated queries through search engine
 - Collect (lots of) result snippets
 - Collect n-grams from snippets
 - Weight each n-gram summing over occurrences
 - Concatenate n-grams into longer answers
 - E.g. Dickens, Charles Dickens, Mr. Charles →
 - Mr. Charles Dickens

Example Redux

Deep Processing Technique for QA


LCC, PowerAnswer, Qanda (Moldovan, Harabagiu, et al)



Deep Processing: Query/Answer Formulation

- Preliminary shallow processing:
 - Tokenization, POS tagging, NE recognition, Preprocess
- Parsing creates syntactic representation:
 - Focused on nouns, verbs, and particles
 - Attachment
- Coreference resolution links entity references
- Translate to full logical form
 - As close as possible to syntax

Syntax to Logical Form

Deep Processing: Answer Selection

- Lexical chains:
 - Bridge gap in lexical choice b/t Q and A
 - Improve retrieval and answer selection
 - Create connections via WordNet synsets
 - Q: When was the internal combustion engine invented?
 - A: The first internal-combustion engine was built in 1867.
 - invent → create_mentally → create → build
- Perform abductive reasoning
 - Tries to justify answer given question
 - Yields 30% improvement in accuracy!

A Victory for Deep Processing

		1					
Run Tag	Score	#	%	Inexact	Prec	Recall	
LCCmain2002	0.856	415	83.0	8	0.578	0.804	
exactanswer	0.691	271	54.2	12	0.222	0.848	
pris2002	0.610	290	58.0	17	0.241	0.891	
IRST02D1	0.589	192	38.4	17	0.167	0.217	
IBMPQSQACY	C 0.588	179	35.8	9	0.196	0.630	
uwmtB3	0.512	184	36.8	20	0.000	0.000	
BBN2002C	0.499	142	28.4	18	0.182	0.087	
isi02	0.498	149	29.8	15	0.385	0.109	
limsiQalir2	0.497	133	26.6	11	0.188	0.196	
ali2002b	0.496	181	36.2	15	0.156	0.848	
ibmsqa02c	0.455	145	29.0	44	0.224	0.239	
FDUT11QA1	0.434	124	24.8	6	0.139	0.957	
aranea02a	0.433	152	30.4	36	0.235	0.174	
nuslamp2002	0.396	105	21.0	17	0.000	0.000	

Aranea: 0.30 on TREC data; 0.42 on TREC queries w/full web

Conclusions

- Deep processing for QA
 - Exploits parsing, semantics, anaphora, reasoning
 - Computationally expensive
 - But tractable because applied only to
 - Questions and Passages
- Trends:
 - Systems continue to make greater use of
 - Web resources: Wikipedia, answer repositories
 - Machine learning!!!!

Summary

- Deep processing techniques for NLP
 - Parsing, semantic analysis, logical forms, reference, etc
 - Create richer computational models of natural language
 - Closer to language understanding
- Shallow processing techniques have dominated many areas
 - IR, QA, MT, WSD, etc
 - More computationally tractable, fewer required resources
- Deep processing techniques experiencing resurgence
 - Some big wins e.g. QA
 - Improved resources: treebanks (syn/disc, Framenet, Propbank)
 - Improved learning algorithms: structured learners,...
 - Increased computation: cloud resources, Grid, etc

Notes

Last assignment posted – Due March 15

- Course evaluation web page posted:
 - Please respond!

THANK YOU!