Dependency Grammars and Parsers

Deep Processing for NLP Ling571 January 27, 2016

Roadmap

- PCFGs: Reranking
- Dependency Grammars
 - Definition
 - Motivation:
 - Limitations of Context-Free Grammars
- Dependency Parsing
 - By conversion to CFG
 - By Graph-based models
 - By transition-based parsing

Reranking

- Issue: Locality
 - PCFG probabilities associated with rewrite rules
 - Context-free grammars
 - Approaches create new rules incorporating context:
 - Parent annotation, Markovization, lexicalization
 - Other problems:
 - Increase rules, sparseness
- Need approach that incorporates broader, global info

Discriminative Parse Reranking

- General approach:
 - Parse using (L)PCFG
 - Obtain top-N parses
 - Re-rank top-N parses using better features
- Discriminative reranking
 - Use arbitrary features in reranker (MaxEnt)
 - E.g. right-branching-ness, speaker identity, conjunctive parallelism, fragment frequency, etc

Reranking Effectiveness

- How can reranking improve?
 - N-best includes the correct parse
- Estimate maximum improvement
 - Oracle parse selection
 - Selects correct parse from N-best
 - If it appears
- E.g. Collins parser (2000)
 - Base accuracy: 0.897
 - Oracle accuracy on 50-best: 0.968
- Discriminative reranking: 0.917

Dependency Parsing

Dependency Grammar

- CFGs:
 - Phrase-structure grammars
 - Focus on modeling constituent structure
- Dependency grammars:
 - Syntactic structure described in terms of
 - Words
 - Syntactic/Semantic relations between words

Dependency Parse

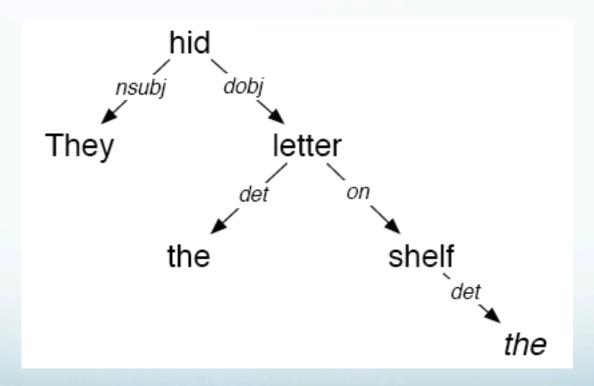
- A dependency parse is a tree, where
 - Nodes correspond to words in utterance
 - Edges between nodes represent dependency relations
 - Relations may be labeled (or not)

Dependency Relations

Argument Dependencies	Description
nsubj	nominal subject
csubj	clausal subject
dobj	direct object
iobj	indirect object
pobj	object of preposition
Modifier Dependencies	Description
tmod	temporal modifier
appos	appositional modifier
det	determiner
prep	prepositional modifier

Dependency Parse Example

They hid the letter on the shelf



Why Dependency Grammar?

- More natural representation for many tasks
 - Clear encapsulation of predicate-argument structure
 - Phrase structure may obscure, e.g. wh-movement
 - Good match for question-answering, relation extraction
 - Who did what to whom
 - Build on parallelism of relations between question/relation specifications and answer sentences

Why Dependency Grammar?

- Easier handling of flexible or free word order
 - How does CFG handle variations in word order?
 - Adds extra phrases structure rules for alternatives
 - Minor issue in English, explosive in other langs
 - What about dependency grammar?
 - No difference: link represents relation
 - Abstracts away from surface word order

Why Dependency Grammar?

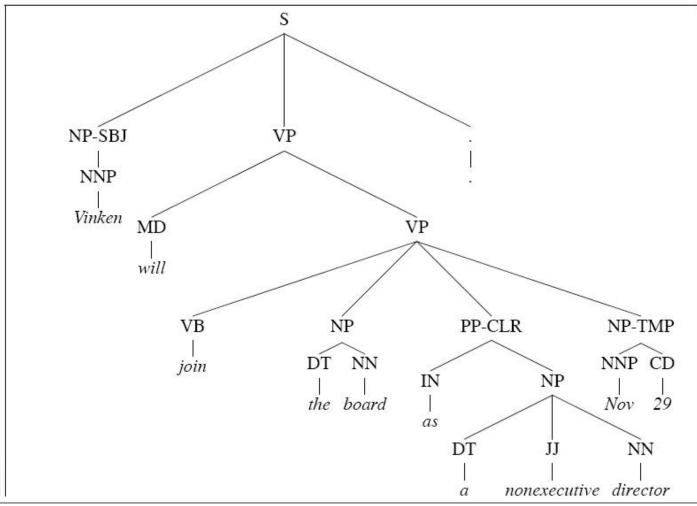
- Natural efficiencies:
 - CFG: Must derive full trees of many non-terminals
 - Dependency parsing:
 - For each word, must identify
 - Syntactic head, h
 - Dependency label, d
 - Inherently lexicalized
 - Strong constraints hold between pairs of words

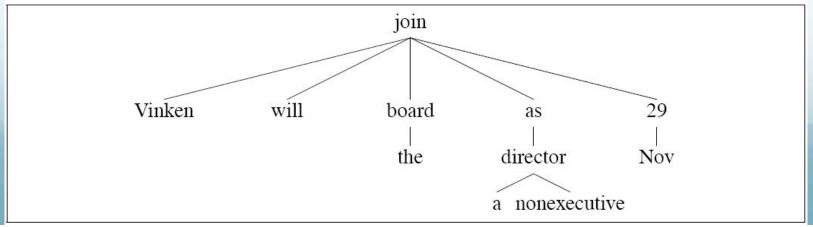
Summary

- Dependency grammar balances complexity and expressiveness
 - Sufficiently expressive to capture predicate-argument structure
 - Sufficiently constrained to allow efficient parsing

Conversion

- Can convert phrase structure to dependency trees
 - Unlabeled dependencies
- Algorithm:
 - Identify all head children in PS tree
 - Make head of each non-head-child depend on head of head-child



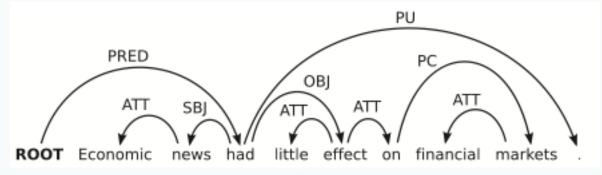


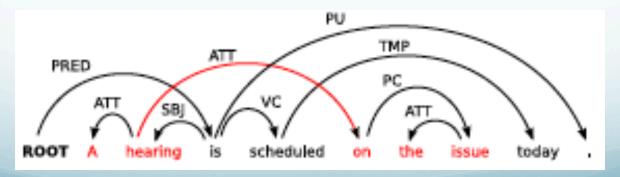
Dependency Parsing

- Three main strategies:
 - Convert dependency trees to PS trees
 - Parse using standard algorithms O(n³)
 - Employ graph-based optimization
 - Weights learned by machine learning
 - Shift-reduce approaches based on current word/state
 - Attachment based on machine learning

Parsing by PS Conversion

- Can map any projective dependency tree to PS tree
 - Non-terminals indexed by words
 - "Projective": no crossing dependency arcs for ordered words



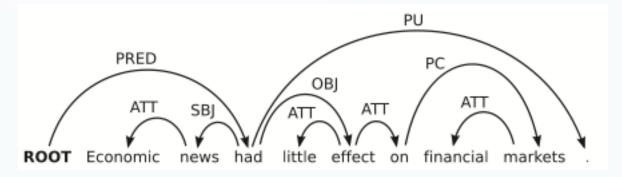


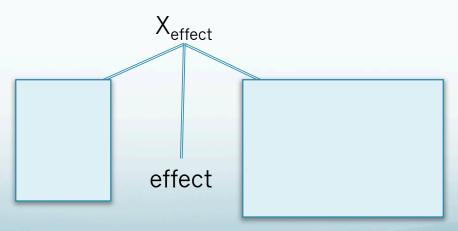
Dep to PS Tree Conversion

- For each node w with outgoing arcs,
 - Convert the subtree w and its dependents t₁,..,t_n to
 - New subtree rooted at X_w with child w and
 - Subtrees at $t_1,...,t_n$ in the original sentence order

Dep to PS Tree Conversion

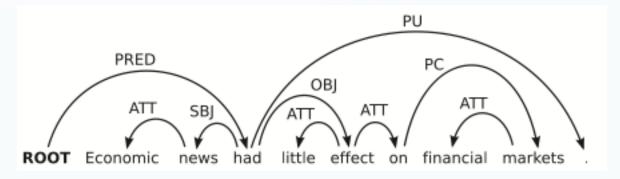
E.g., for 'effect'

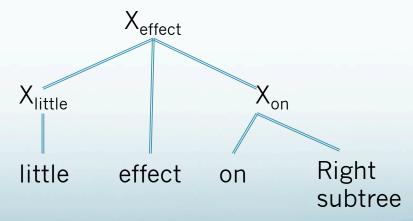




Dep to PS Tree Conversion

E.g., for 'effect'

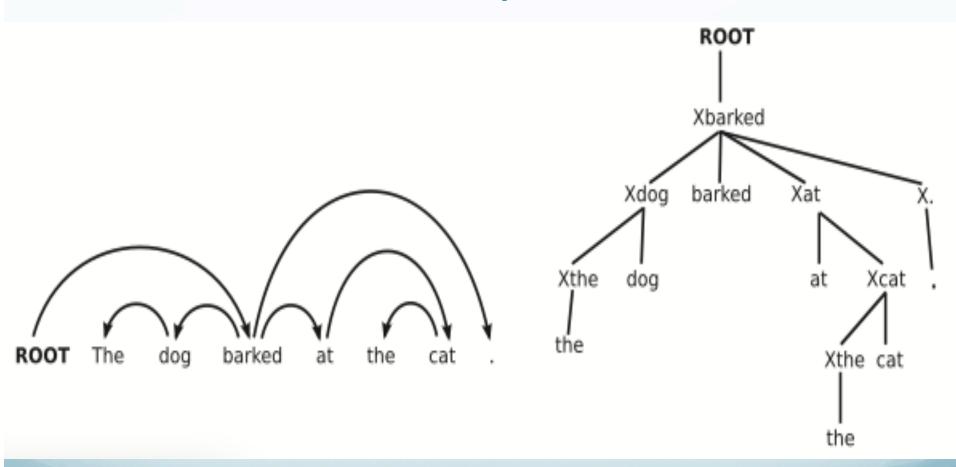




PS to Dep Tree Conversion

- What about the dependency labels?
 - Attach labels to non-terminals associated with non-heads
 - E.g. X_{little} → X_{little:nmod}
- Doesn't create typical PS trees
 - Does create fully lexicalized, context-free trees
 - Also labeled
- Can be parsed with any standard CFG parser
 - E.g. CKY, Earley

Full Example Trees



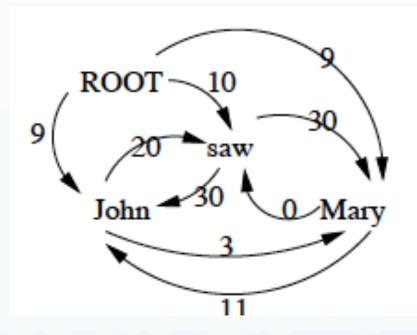
Graph-based Dependency Parsing

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.
- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank
- Where are the grammar rules?
 - There aren't any; data-driven processing

Graph-based Dependency Parsing

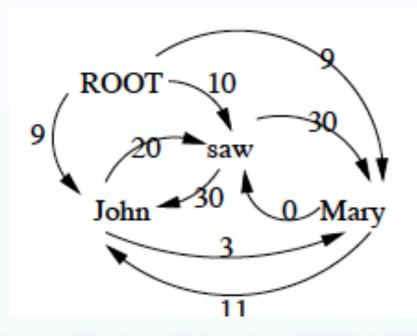
- Map dependency parsing to maximum spanning tree
- Idea:
 - Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - + Edges from ROOT to all words
 - Identify maximum spanning tree
 - Tree s.t. all nodes are connected
 - Select such tree with highest weight
 - Arc-factored model: Weights depend on end nodes & link
 - Weight of tree is sum of participating arcs

Initial Tree



- Sentence: John saw Mary (McDonald et al, 2005)
 - All words connected; ROOT only has outgoing arcs

Initial Tree



- Sentence: John saw Mary (McDonald et al, 2005)
 - All words connected; ROOT only has outgoing arcs
- Goal: Remove arcs to create a tree covering all words
 - Resulting tree is dependency parse

 McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
 - "Contract" the cycle: Treat it as a single vertex
 - Recalculate weights into/out of the new vertex
 - Recursively do MST algorithm on resulting graph

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
 - "Contract" the cycle: Treat it as a single vertex
 - Recalculate weights into/out of the new vertex
 - Recursively do MST algorithm on resulting graph
- Running time: naïve: O(n³); Tarjan: O(n²)
 - Applicable to non-projective graphs