
Feature-Based
Grammar

Ling571
Deep Processing Techniques for NLP

February 3, 2016

Features in CFGs:
Agreement

�  Goal:
�  Support agreement of NP/VP, Det Nominal

�  Approach:
�  Augment CFG rules with features
�  Employ head features

�  Each phrase: VP, NP has head
�  Head: child that provides features to phrase

�  Associates grammatical role with word

�  VP – V; NP – Nom, etc

Simple Feature Grammars
�  S -> NP[NUM=?n] VP[NUM=?n]

�  NP[NUM=?n] -> N[NUM=?n]

�  NP[NUM=?n] -> PropN[NUM=?n]

�  NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]

�  Det[NUM=sg] -> 'this' | 'every’

�  Det[NUM=pl] -> 'these' | 'all’

�  N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child’

�  N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'

Parsing with Features
�  >>> cp = load_parser('grammars/book_grammars/

feat0.fcfg’)

�  >>> for tree in cp.parse(tokens):
�  ... print(tree)

�  (S[] (NP[NUM='sg']
�  (PropN[NUM='sg'] Kim))
�  (VP[NUM='sg', TENSE='pres']

�  (TV[NUM='sg', TENSE='pres'] likes)

�  (NP[NUM='pl'] (N[NUM='pl'] children))))

Feature Applications
�  Subcategorization:

�  Verb-Argument constraints
�  Number, type, characteristics of args (e.g. animate)

�  Also adjectives, nouns

�  Long distance dependencies
�  E.g. filler-gap relations in wh-questions, rel

Morphosyntactic Features
�  Grammatical feature that influences morphological

or syntactic behavior
�  English:

�  Number:
�  Dog, dogs

�  Person:
�  Am; are; is

�  Case:
�  I – me; he – him; etc

�  Countability:

Semantic Features
�  Grammatical features that influence semantic

(meaning) behavior of associated units

�  E.g.:
�  ?The rocks slept.

�  Many proposed:
�  Animacy: +/-
�  Natural gender: masculine, feminine, neuter
�  Human: +/-
�  Adult: +/-
�  Liquid: +/-

Aspect (J&M 17.4.2)
�  The climber hiked for six hours.

�  The climber hiked on Saturday.

�  The climber reached the summit on Saturday.

�  *The climber reached the summit for six hours.

�  Contrast:
�  Achievement (in an instant) vs activity (for a time)

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
�  Augment rules with feature structure

�  Augment state (chart entries) with DAG
�  Prediction adds DAG from rule

�  Completion applies unification (on copies)
�  Adds entry only if current DAG is NOT subsumed

Summary
�  Features

�  Enable compact representation of grammatical
constraints

�  Capture basic linguistic patterns

�  Unification
�  Creates and maintains consistency over features

�  Integration with parsing allows filtering of ill-
formed analyses

HW #5
Ling 571

Deep Techniques for NLP
February 3, 2016

Feature-based Parsing
�  Goals:

�  Explore the role of features in implementing linguistic
constraints.

�  Identify some of the challenges in building compact
constraints to define a precise grammar.

�  Gain some further familiarity with NLTK.
�  Apply feature-based grammars to perform grammar

checking.

�  Individual work

Task
�  Create grammar rules with features

�  Produce a single parse for grammatical sentences
�  Single parse per line

�  Reject ungrammatical sentences
�  Print blank line

�  Homework includes sentences and “key”

Feature Grammar in NLTK
�  NLTK supports feature-based grammars, including

�  ways of associating features with CFG rules

�  readers for feature grammars
�  .fcfg files

�  parsers
�  Nltk.parse.FeatureEarleyChartParser

�  Nice discussion, examples in NLTK book CH. 9 (Ch. 8, ed1)
�  NOTE: HPSG-style comps list <NP,PP,..> NOT built into NLTK

�  Can be approximated with pseudo-list: e.g. [FIRST=?a, REST=?b]
�  For Extra-credit

Feature Structures
�  >>> fs1 = nltk.FeatStruct(“[NUM=‘pl’]”)
�  >>> print fs1
�  [NUM=‘pl’]

�  >>> print fs1[‘NUM’]
�  pl

�  More complex structure
�  >>> fs2 = nltk.FeatStruct(“[POS=‘N’,

�  AGR=[NUM=‘pl’,PER=3]]”)

Reentrant Feature
Structures

�  First instance
�  Parenthesized integer: (1)

�  Subsequent instances:
�  ‘Pointer’: -> (1)

�  >>> print(nltk.FeatStruct("[A='a', B=(1)[C='c'],
 D->(1)]”))
�  [A = ‘a’]
�  [B = (1) [C = ‘c’]]
�  [D -> (1)]

Augmenting Grammars
�  Attach feature information to non-terminals, on

�  N[AGR=[NUM='pl']] -> 'students’
�  N[AGR=[NUM=’sg']] -> 'student’

�  So far, all values are literal or reentrant
�  Variables allow generalization: ?a

�  Allows underspecification, e.g. Det[GEN=?a]

�  NP[AGR=?a] -> Det[AGR=?a] N[AGR=?a]

Mechanics
�  >>> fs3 = nltk.FeatStruct(NUM=‘pl’,PER=3)

�  >>> fs4 = nltk.FeatStruct(NUM=‘pl’)

�  >>> print fs4.unify(fs3)

�  [NUM = ‘pl’]

�  [PER = 3]

