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Roadmap 
�  Compositional Semantics 

�  Rule-to-rule model 

�  Semantic attachments 

�  Extended examples 

�  Scope and Parsing 



Summary  
�  First-order logic can be used as a meaning 

representation language for natural language 

�  Principle of  compositionality: the meaning of  a 
complex expression is a function of  the meaning of  
its parts 

�  λ-expressions can be used to compute meaning  
representations from syntactic trees based on the 
principle of  compositionality 

�  In the next section, we will look at a syntax-driven 
approach to semantic analysis in more detail 



Syntax-driven Semantic Analysis 
�  Key: Principle of  Compositionality 

�  Meaning of  sentence from meanings of  parts 
�  E.g. groupings and relations from syntax 

�  Question: Integration? 

�  Solution 1: Pipeline   
�  Feed parse tree and sentence to semantic unit 

�  Sub-Q: Ambiguity: 
�  Approach: Keep all analyses, later stages will select 

 



Simple Example 
� United serves Houston. 

∃e Serving(e)∧Server(e,United)∧Served(e,Houston)

S 

NP                   VP 

Prop-N            V               NP 

Prop-N 

United        serves      Houston. 



Rule-to-Rule 
�  Issue:  

�  How do we know which pieces of  the semantics link to 
what part of  the analysis? 

�  Need detailed information about sentence, parse tree 
�  Infinitely many sentences & parse trees 
�  Semantic mapping function per parse tree è intractable 

�  Solution:  
�  Tie semantics to finite components of  grammar 

�  E.g. rules & lexicon 
�  Augment grammar rules with semantic info 

�  Aka “attachments” 
�  Specify how RHS elements compose to LHS 



Semantic Attachments 
�  Basic structure: 

�  Aà a1….an   {f(aj.sem,…ak.sem)} 
�  A.sem 

�  Language for semantic attachments 
�  Arbitrary programming language fragments? 

�  Arbitrary power but hard to map to logical form 
�  No obvious relation between syntactic, semantic elements 

�  Lambda calculus 
�  Extends First Order Predicate Calculus (FOPC) with function 

application 
�  Feature-based model + unification 

�  Focus on lambda calculus approach 



Semantic Analysis 
Approach 

�  Semantic attachments: 
�  Each CFG production gets semantic attachment 

�  Phrase semantics is function of  SA of  children 
�  Complex functions parametrized 

�  E.g. Verb à arrived 
�  Need unary predicate  

�  One arg: subject, not yet available 



Semantic Analysis Example 
�  Basic model: 

�  Neo-Davidsonian event-style model 

�  Complex quantification 

�  Example: 
�  Every flight arrived. 

�  (S (NP (Det every) (Nom (Noun flight))) 
�      (VP (V arrived))) 
�  Target representation: 

∀xFlight(x)⇒∃eArrived(e)∧ArrivedThing(e, x)



Defining Representation 
�  Idea: Every flight =  

�  Good enough? 
�  No: roughly ‘everything is a flight’ 

�  Saying something about all flights – nuclear scope 

�  Solution: Dummy predicate 

�  Good enough? 
�  No: no way to get Q(x) from elsewhere in sentence   

�  Solution: Lambda 

∀xFlight(x)

∀xFlight(x)⇒Q(x)

λQ.∀xFlight(x)⇒Q(x)



Creating Attachments 
�  Noun à flight     {λx.Flight(x)} 

�  Nom à Noun    { Noun.sem } 

�  Det à Every    {        } 

�  NP à Det Nom   { Det.sem(Nom.sem) } 

λP.λQ.∀xP(x)⇒Q(x)



λP.λQ.∀xP(x)⇒Q(x)(λx.Flight(x))
λP.λQ.∀xP(x)⇒Q(x)(λy.Flight(y))
λQ.∀xλy.Flight(y)(x)⇒Q(x)
λQ.∀xFlight(x)⇒Q(x)



Full Representation 
�  Verb à arrived  {                }  

�  VP à Verb   { Verb.sem } 

�  S à NP VP   { NP.sem(VP.sem) } 

λx.∃eArrived(e)∧ArrivedThing(e, x)

λQ.∀xFlight(x)⇒Q(x)(λy.∃eArrived(e)∧ArrivedThing(e, y))
∀xFlight(x)⇒ λy.∃eArrived(e)∧ArrivedThing(e, y)(x)
∀xFlight(x)⇒∃eArrived(e)∧ArrivedThing(e, x)



Extending Attachments 
�  ProperNoun à UA223   

�  What should semantics look like in this style? 
�  Needs to produce correct form when applied to VP.sem 

�  As in “UA223 arrived” è  

�  Correct form:λX.X (UA223) 
�  Applies predicate to UA223 

∃eArrived(e)∧ArrivedThing(e,UA223)



More   
�  Determiner 

�  Det à a   {      } 

�  a flight   

�  Transitive verb: 
�  VP à Verb  NP  { Verb.sem(NP.sem) } 
�  Verb à booked  

λP.λQ.∃xP(x)∧Q(x)
λQ.∃xFlight(x)∧Q(x)

λw.λz.w(λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x))



Strategy for Semantic 
Attachments 

�  General approach: 
�  Create complex, lambda expressions with lexical items 

�  Introduce quantifiers, predicates, terms 

�  Percolate up semantics from child if  non-branching 

�  Apply semantics of  one child to other through lambda 
�  Combine elements, but don’t introduce new 



John booked a flight 
�  a flight  

�  VP à Verb NP          {Verb.sem(NP.sem)} 

�        (                                           ) 

λz.λQ.∃yFlight(y)∧Q(y)
(λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x))

λQ.∃yFlight(y)∧Q(y)
λw.λz.w(λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x))

λz.∃yFlight(y)∧
λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x)(y)

λQ.∃xFlight(x)∧Q(x)



John booked a flight 
�  a flight  

�  VP à Verb NP           {Verb.sem(NP.sem)} 

�        (                                           ) 

λz.λQ.∃yFlight(y)∧Q(y)
(λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x))

λQ.∃yFlight(y)∧Q(y)
λw.λz.w(λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x))

λz.∃yFlight(y)∧
∃eBooked(e)∧Booker(e, z)∧BookedThing(e, y)

λQ.∃xFlight(x)∧Q(x)



John booked a flight 
�  Proper_Noun à John  {λx.x(John)} 

�  S à NP VP  {NP.sem(VP.sem)} 

�  λx.x(John) 

                                                                            

(λz.∃yFlight(y)∧
∃eBooked(e)∧Booker(e, z)∧BookedThing(e, y))(John)

(λz.∃yFlight(y)∧
∃eBooked(e)∧Booker(e, z)∧BookedThing(e, y))



John booked a flight 

(λz.∃yFlight(y)∧
∃eBooked(e)∧Booker(e, z)∧BookedThing(e, y))(John)

∃yFlight(y)∧
∃eBooked(e)∧Booker(e, John)∧BookedThing(e, y)



Strategy for Semantic 
Attachments 

�  General approach: 
�  Create complex, lambda expressions with lexical items 

�  Introduce quantifiers, predicates, terms 

�  Percolate up semantics from child if  non-branching 

�  Apply semantics of  one child to other through lambda 
�  Combine elements, but don’t introduce new 



Semantics Learning 
�  Zettlemoyer & Collins, 2005, 2007, etc; Mooney 

2007 

�  Given semantic representation and corpus of  
parsed sentences 
�  Learn mapping from sentences to logical form 

�  Structured perceptron 

�  Applied to ATIS corpus sentences 

�  Similar approaches to: learning instructions from 
computer manuals, game play from walkthroughs, 
robocup/soccer play from commentary 



Quantifier Scope 
�  Ambiguity:  

�  Every restaurant has a menu 

�  Readings:  
�  all have a menu; 
�  all have same menu 

�  Only derived one 

�  Potentially O(n!) scopings (n=# quantifiers) 

�  There are approaches to describe ambiguity 
efficiently and recover all alternatives. 

∀xRe staurant(x)⇒∃y(Menu(y)∧(∃eHaving(e)∧Haver(e, x)∧Had(e, y)))

∃yMenu(y)∧∀x(Re staurant(x)⇒∃eHaving(e)∧Haver(e, x)∧Had(e, y)))



Parsing with Semantics 
�  Implement semantic analysis 

�  In parallel with syntactic parsing 
�  Enabled by compositional approach 

�  Required modifications 
�  Augment grammar rules with semantic field 
�  Augment chart states with meaning expression 
�  Incrementally compute semantics  

�  Can also fail  
�  Blocks semantically invalid parses 

�  Can impose extra work 



Sidelight: Idioms 
�  Not purely compositional 

�  E.g. kick the bucket = die 

�          tip of  the iceberg = beginning 

�  Handling: 
�  Mix lexical items with constituents (word nps) 
�  Create idiom-specific const. for productivity 

�  Allow non-compositional semantic attachments 

�  Extremely complex: e.g. metaphor 


