
Computational
Semantics
Deep Processing for NLP

Ling 571
February 8, 2017

Roadmap
�  Compositional Semantics

�  Rule-to-rule model

�  Semantic attachments

�  Extended examples

�  Scope and Parsing

Summary
�  First-order logic can be used as a meaning

representation language for natural language

�  Principle of compositionality: the meaning of a
complex expression is a function of the meaning of
its parts

�  λ-expressions can be used to compute meaning
representations from syntactic trees based on the
principle of compositionality

�  In the next section, we will look at a syntax-driven
approach to semantic analysis in more detail

Syntax-driven Semantic Analysis
�  Key: Principle of Compositionality

�  Meaning of sentence from meanings of parts
�  E.g. groupings and relations from syntax

�  Question: Integration?

�  Solution 1: Pipeline
�  Feed parse tree and sentence to semantic unit

�  Sub-Q: Ambiguity:
�  Approach: Keep all analyses, later stages will select

Simple Example
� United serves Houston.

∃e Serving(e)∧Server(e,United)∧Served(e,Houston)

S

NP VP

Prop-N V NP

Prop-N

United serves Houston.

Rule-to-Rule
�  Issue:

�  How do we know which pieces of the semantics link to
what part of the analysis?

�  Need detailed information about sentence, parse tree
�  Infinitely many sentences & parse trees
�  Semantic mapping function per parse tree è intractable

�  Solution:
�  Tie semantics to finite components of grammar

�  E.g. rules & lexicon
�  Augment grammar rules with semantic info

�  Aka “attachments”
�  Specify how RHS elements compose to LHS

Semantic Attachments
�  Basic structure:

�  Aà a1….an {f(aj.sem,…ak.sem)}
�  A.sem

�  Language for semantic attachments
�  Arbitrary programming language fragments?

�  Arbitrary power but hard to map to logical form
�  No obvious relation between syntactic, semantic elements

�  Lambda calculus
�  Extends First Order Predicate Calculus (FOPC) with function

application
�  Feature-based model + unification

�  Focus on lambda calculus approach

Semantic Analysis
Approach

�  Semantic attachments:
�  Each CFG production gets semantic attachment

�  Phrase semantics is function of SA of children
�  Complex functions parametrized

�  E.g. Verb à arrived
�  Need unary predicate

�  One arg: subject, not yet available

Semantic Analysis Example
�  Basic model:

�  Neo-Davidsonian event-style model

�  Complex quantification

�  Example:
�  Every flight arrived.

�  (S (NP (Det every) (Nom (Noun flight)))
�  (VP (V arrived)))
�  Target representation:

∀xFlight(x)⇒∃eArrived(e)∧ArrivedThing(e, x)

Defining Representation
�  Idea: Every flight =

�  Good enough?
�  No: roughly ‘everything is a flight’

�  Saying something about all flights – nuclear scope

�  Solution: Dummy predicate

�  Good enough?
�  No: no way to get Q(x) from elsewhere in sentence

�  Solution: Lambda

∀xFlight(x)

∀xFlight(x)⇒Q(x)

λQ.∀xFlight(x)⇒Q(x)

Creating Attachments
�  Noun à flight {λx.Flight(x)}

�  Nom à Noun { Noun.sem }

�  Det à Every { }

�  NP à Det Nom { Det.sem(Nom.sem) }

λP.λQ.∀xP(x)⇒Q(x)

λP.λQ.∀xP(x)⇒Q(x)(λx.Flight(x))
λP.λQ.∀xP(x)⇒Q(x)(λy.Flight(y))
λQ.∀xλy.Flight(y)(x)⇒Q(x)
λQ.∀xFlight(x)⇒Q(x)

Full Representation
�  Verb à arrived { }

�  VP à Verb { Verb.sem }

�  S à NP VP { NP.sem(VP.sem) }

λx.∃eArrived(e)∧ArrivedThing(e, x)

λQ.∀xFlight(x)⇒Q(x)(λy.∃eArrived(e)∧ArrivedThing(e, y))
∀xFlight(x)⇒ λy.∃eArrived(e)∧ArrivedThing(e, y)(x)
∀xFlight(x)⇒∃eArrived(e)∧ArrivedThing(e, x)

Extending Attachments
�  ProperNoun à UA223

�  What should semantics look like in this style?
�  Needs to produce correct form when applied to VP.sem

�  As in “UA223 arrived” è

�  Correct form:λX.X (UA223)
�  Applies predicate to UA223

∃eArrived(e)∧ArrivedThing(e,UA223)

More
�  Determiner

�  Det à a { }

�  a flight

�  Transitive verb:
�  VP à Verb NP { Verb.sem(NP.sem) }
�  Verb à booked

λP.λQ.∃xP(x)∧Q(x)
λQ.∃xFlight(x)∧Q(x)

λw.λz.w(λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x))

Strategy for Semantic
Attachments

�  General approach:
�  Create complex, lambda expressions with lexical items

�  Introduce quantifiers, predicates, terms

�  Percolate up semantics from child if non-branching

�  Apply semantics of one child to other through lambda
�  Combine elements, but don’t introduce new

John booked a flight
�  a flight

�  VP à Verb NP {Verb.sem(NP.sem)}

�  ()

λz.λQ.∃yFlight(y)∧Q(y)
(λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x))

λQ.∃yFlight(y)∧Q(y)
λw.λz.w(λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x))

λz.∃yFlight(y)∧
λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x)(y)

λQ.∃xFlight(x)∧Q(x)

John booked a flight
�  a flight

�  VP à Verb NP {Verb.sem(NP.sem)}

�  ()

λz.λQ.∃yFlight(y)∧Q(y)
(λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x))

λQ.∃yFlight(y)∧Q(y)
λw.λz.w(λx.∃eBooked(e)∧Booker(e, z)∧BookedThing(e, x))

λz.∃yFlight(y)∧
∃eBooked(e)∧Booker(e, z)∧BookedThing(e, y)

λQ.∃xFlight(x)∧Q(x)

John booked a flight
�  Proper_Noun à John {λx.x(John)}

�  S à NP VP {NP.sem(VP.sem)}

�  λx.x(John)

(λz.∃yFlight(y)∧
∃eBooked(e)∧Booker(e, z)∧BookedThing(e, y))(John)

(λz.∃yFlight(y)∧
∃eBooked(e)∧Booker(e, z)∧BookedThing(e, y))

John booked a flight

(λz.∃yFlight(y)∧
∃eBooked(e)∧Booker(e, z)∧BookedThing(e, y))(John)

∃yFlight(y)∧
∃eBooked(e)∧Booker(e, John)∧BookedThing(e, y)

Strategy for Semantic
Attachments

�  General approach:
�  Create complex, lambda expressions with lexical items

�  Introduce quantifiers, predicates, terms

�  Percolate up semantics from child if non-branching

�  Apply semantics of one child to other through lambda
�  Combine elements, but don’t introduce new

Semantics Learning
�  Zettlemoyer & Collins, 2005, 2007, etc; Mooney

2007

�  Given semantic representation and corpus of
parsed sentences
�  Learn mapping from sentences to logical form

�  Structured perceptron

�  Applied to ATIS corpus sentences

�  Similar approaches to: learning instructions from
computer manuals, game play from walkthroughs,
robocup/soccer play from commentary

Quantifier Scope
�  Ambiguity:

�  Every restaurant has a menu

�  Readings:
�  all have a menu;
�  all have same menu

�  Only derived one

�  Potentially O(n!) scopings (n=# quantifiers)

�  There are approaches to describe ambiguity
efficiently and recover all alternatives.

∀xRe staurant(x)⇒∃y(Menu(y)∧(∃eHaving(e)∧Haver(e, x)∧Had(e, y)))

∃yMenu(y)∧∀x(Re staurant(x)⇒∃eHaving(e)∧Haver(e, x)∧Had(e, y)))

Parsing with Semantics
�  Implement semantic analysis

�  In parallel with syntactic parsing
�  Enabled by compositional approach

�  Required modifications
�  Augment grammar rules with semantic field
�  Augment chart states with meaning expression
�  Incrementally compute semantics

�  Can also fail
�  Blocks semantically invalid parses

�  Can impose extra work

Sidelight: Idioms
�  Not purely compositional

�  E.g. kick the bucket = die

�  tip of the iceberg = beginning

�  Handling:
�  Mix lexical items with constituents (word nps)
�  Create idiom-specific const. for productivity

�  Allow non-compositional semantic attachments

�  Extremely complex: e.g. metaphor

