Coreference & Coherence

Ling571
Deep Processing Techniques for NLP
March 6, 2017
Roadmap

- Coreference algorithms:
 - Data-driven techniques
 - Deterministic sieves

- Discourse structure
 - Cohesion
 - Topic segmentation
 - Coherence
 - Discourse parsing
Data-driven Reference Resolution

- Prior approaches: Knowledge-based, hand-crafted
- Data-driven machine learning approach
 - Coreference as classification, clustering, ranking problem
 - Mention-pair model:
 - For each pair NP_i, NP_j, do they corefer?
 - Cluster to form equivalence classes
 - Entity-mention model
 - For each pair NP_k and cluster C_j, should the NP be in the cluster?
 - Ranking models
 - For each NP_k, and all candidate antecedents, which highest?
NP Coreference Examples

• Link all NPs refer to same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help the King overcome his speech impediment...
Annotated Corpora

- Available shared task corpora
 - MUC-6, MUC-7 (Message Understanding Conference)
 - 60 documents each, newswire, English
 - ACE (Automatic Content Extraction)
 - Originally English newswire
 - Later include Chinese, Arabic; blog, CTS, Usenet, etc

- Treebanks
 - English Penn Treebank (OntoNotes)
 - German, Czech, Japanese, Spanish, Catalan, Medline
Feature Engineering

- Other coreference (not pronominal) features
 - String-matching features:
 - Mrs. Clinton <-> Clinton

- Semantic features:
 - Can candidate appear in same role w/same verb?
 - WordNet similarity
 - Wikipedia: broader coverage

- Lexico-syntactic patterns:
 - E.g. X is a Y
Typical Feature Set

- 25 features per instance: 2NPs, features, class
 - lexical (3)
 - string matching for pronouns, proper names, common nouns
 - grammatical (18)
 - pronoun_1, pronoun_2, demonstrative_2, indefinite_2, ...
 - number, gender, animacy
 - appositive, predicate nominative
 - binding constraints, simple contra-indexing constraints, ...
 - span, maximalnp, ...
 - semantic (2)
 - same WordNet class
 - alias
 - positional (1)
 - distance between the NPs in terms of # of sentences
 - knowledge-based (1)
 - naïve pronoun resolution algorithm
Coreference Evaluation

- Key issues:
 - Which NPs are evaluated?
 - Gold standard tagged or
 - Automatically extracted

- How good is the partition?
 - Any cluster-based evaluation could be used (e.g. Kappa)
 - MUC scorer:
 - Link-based: ignores singletons; penalizes large clusters
 - Other measures compensate
Clustering by Classification

- Mention-pair style system:
 - For each pair of NPs, classify +/- coreferent
 - Any classifier
 - Linked pairs form coreferential chains
 - Process candidate pairs from End to Start
 - All mentions of an entity appear in single chain
 - F-measure: MUC-6: 62-66%; MUC-7: 60-61%
 - Soon et. al, Cardie and Ng (2002)
Multi-pass Sieve Approach

- Raghunathan et al., 2010

Key Issues:
- Limitations of mention-pair classifier approach
 - Local decisions over large number of features
 - Not really transitive

- Can’t exploit global constraints

- Low precision features may overwhelm less frequent, high precision ones
Multi-pass Sieve Strategy

- Basic approach:
 - Apply tiers of deterministic coreference modules
 - Ordered highest to lowest precision
 - Aggregate information across mentions in cluster
 - Share attributes based on prior tiers

- Simple, extensible architecture
 - Outperforms many other (un-)supervised approaches
Multi-Pass Sieve

Mention Detection

Sieve1: Speaker Identification
Sieve2: String Match
Sieve3: Relaxed String Match
Sieve4: Precise Constructs
Sieve5: Strict Head Match A
Sieve6: Strict Head Match B
Sieve7: Strict Head Match C
Sieve8: Proper Head Noun Match
Sieve9: Relaxed Head Match
Sieve10: Pronoun Match

Post Processing

More global decisions
Recall increases
Pre-Processing and Mentions

- Pre-processing:
 - Gold mention boundaries given, parsed, NE tagged

- For each mention, each module can skip or pick best candidate antecedent
 - Antecedents ordered:
 - Same sentence: by Hobbs algorithm
 - Prev. sentence:
 - For Nominal: by right-to-left, breadth first: proximity/recency
 - For Pronoun: left-to-right: salience hierarchy
 - W/in cluster: aggregate attributes, order mentions
 - Prune indefinite mentions: can’t have antecedents
Multi-pass Sieve Modules

- **Pass 1**: Exact match (N): P: 96%

- **Pass 2**: Precise constructs
 - Predicate nominative, (role) appositive, re:; pronoun, acronym, demonym

- **Pass 3**: Strict head matching
 - Matches cluster head noun AND all non-stop cluster wds AND modifiers AND non i-within-l (embedded NP)

- **Pass 4 & 5**: Variants of 3: drop one of above
Multi-pass Sieve Modules

- Pass 6: Relaxed head match
 - Head matches any word in cluster AND all non-stop cluster wds AND non i-within-l (embedded NP)

- Pass 7: Pronouns
 - Enforce constraints on gender, number, person, animacy, and NER labels
Multi-pass Effectiveness

<table>
<thead>
<tr>
<th>Passes</th>
<th>MUC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
</tr>
<tr>
<td>{1}</td>
<td>95.9</td>
</tr>
<tr>
<td>{1,2}</td>
<td>95.4</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>92.1</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>91.7</td>
</tr>
<tr>
<td>{1,2,3,4,5}</td>
<td>91.1</td>
</tr>
<tr>
<td>{1,2,3,4,5,6}</td>
<td>89.5</td>
</tr>
<tr>
<td>{1,2,3,4,5,6,7}</td>
<td>83.7</td>
</tr>
</tbody>
</table>
Sieve Effectiveness

- ACE Newswire

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work (sieve)</td>
<td>83.8</td>
<td>73.2</td>
<td>78.1</td>
</tr>
<tr>
<td>This work (single pass)</td>
<td>82.2</td>
<td>71.5</td>
<td>76.5</td>
</tr>
<tr>
<td>Haghighi and Klein (2009) +S</td>
<td>77.0</td>
<td>75.9</td>
<td>76.5</td>
</tr>
<tr>
<td>Poon and Domingos (2008)</td>
<td>71.3</td>
<td>70.5</td>
<td>70.9</td>
</tr>
<tr>
<td>Finkel and Manning (2008) +G</td>
<td>78.7</td>
<td>58.5</td>
<td>67.1</td>
</tr>
</tbody>
</table>
Questions

- Good accuracies on (clean) text. What about...
 - Conversational speech?
 - Ill-formed, disfluent
 - Dialogue?
 - Multiple speakers introduce referents
 - Multimodal communication?
 - How else can entities be evoked?
 - Are all equally salient?
More Questions

- Good accuracies on (clean) (English) text: What about..
 - Other languages?
 - Salience hierarchies the same
 - Other factors
 - Syntactic constraints?
 - E.g. reflexives in Chinese, Korean,..
 - Zero anaphora?
 - How do you resolve a pronoun if you can’t find it?
Reference Resolution Algorithms

- Many other alternative strategies:
 - Linguistically informed, saliency hierarchy
 - Centering Theory
 - Machine learning approaches:
 - Supervised: Maxent
 - Unsupervised: Clustering
 - Heuristic, high precision:
 - Cogniac
Conclusions

- Co-reference establishes coherence
- Reference resolution depends on coherence
- Variety of approaches:
 - Syntactic constraints, Recency, Frequency, Role
- Similar effectiveness - different requirements
- Co-reference can enable summarization within and across documents (and languages!)
Discourse Structure
Why Model Discourse Structure? (Theoretical)

- Discourse: not just constituent utterances
 - Create joint meaning
 - Context guides interpretation of constituents
 - How????
 - What are the units?
 - How do they combine to establish meaning?
 - How can we derive structure from surface forms?
 - What makes discourse coherent vs not?
 - How do they influence reference resolution?
Why Model Discourse Structure? (Applied)

- Design better summarization, understanding
- Improve speech synthesis
 - Influenced by structure
- Develop approach for generation of discourse
- Design dialogue agents for task interaction
- Guide reference resolution
Discourse Topic Segmentation

- Separate news broadcast into component stories

On "World News Tonight" this Thursday, another bad day on stock markets, all over the world global economic anxiety. ||
Another massacre in Kosovo, the U.S. and its allies prepare to do something about it. Very slowly. ||
And the millennium bug, Lubbock Texas prepares for catastrophe, Bangalore in India sees only profit. ||
Discourse Segmentation

- Basic form of discourse structure
 - Divide document into linear sequence of subtopics

- Many genres have conventional structures:
 - Academic: Into, Hypothesis, Methods, Results, Concl.
 - Newspapers: Headline, Byline, Lede, Elaboration
 - Patient Reports: Subjective, Objective, Assessment, Plan

- Can guide: summarization, retrieval
Cohesion

- Use of linguistics devices to link text units
 - Lexical cohesion:
 - Link with relations between words
 - Synonymy, Hypernymy
 - *Peel, core and slice the pears and the apples. Add the fruit to the skillet.*
 - Non-lexical cohesion:
 - E.g. anaphora
 - *Peel, core and slice the pears and the apples. Add them to the skillet.*
 - Cohesion chain establishes link through sequence of words

- Segment boundary = dip in cohesion
TextTiling (Hearst ‘97)

- Lexical cohesion-based segmentation
 - Boundaries at dips in cohesion score
 - Tokenization, Lexical cohesion score, Boundary ID

- Tokenization
 - Units?
 - White-space delimited words
 - Stopped
 - Stemmed
 - 20 words = 1 pseudo sentence
Lexical Cohesion Score

- Similarity between spans of text
 - \(b \) = ‘Block’ of 10 pseudo-sentences before gap
 - \(a \) = ‘Block’ of 10 pseudo-sentences after gap
 - How do we compute similarity?
 - Vectors and cosine similarity (again!)

\[
\text{sim}_{\text{cosine}}(\vec{b}, \vec{a}) = \frac{\vec{b} \cdot \vec{a}}{\|\vec{b}\| \|\vec{a}\|} = \frac{\sum_{i=1}^{N} b_i \times a_i}{\sqrt{\sum_{i=1}^{N} b_i^2} \sqrt{\sum_{i=1}^{N} a_i^2}}
\]
Segmentation

- Depth score:
 - Difference between position and adjacent peaks
 - E.g., \((y_{a1} - y_{a2}) + (y_{a3} - y_{a2})\)