Introduction to Deep Processing Techniques for NLP

Deep Processing Techniques for NLP
Ling 571
January 4, 2017
Gina-Anne Levow

Roadmap

- Motivation:
 - Applications
- Language and Thought
- Knowledge of Language
 - Cross-cutting themes
 - Ambiguity, Evaluation, & Multi-linguality
- Course Overview
- Introduction to Syntax and Parsing

Motivation: Applications

- Applications of Speech and Language Processing
 - Call routing
 - Information retrieval
 - Question-answering
 - Machine translation
 - Dialog systems
 - Spell-, Grammar- checking
 - Sentiment Analysis
 - Information extraction....

Building on Many Fields

- Linguistics: Morphology, phonology, syntax, semantics,...
- Psychology: Reasoning, mental representations
- Formal logic
- Philosophy (of language)
- Theory of Computation: Automata,...
- Artificial Intelligence: Search, Reasoning, Knowledge representation, Machine learning, Pattern matching
- Probability...

Language & Intelligence

- Turing Test: (1950) Operationalize intelligence
 - Two contestants: human, computer
 - Judge: human
 - Test: Interact via text questions
 - Question: Can you tell which contestant is human?
- Crucially requires language use and understanding

Limitations of Turing Test

- ELIZA (Weizenbaum 1966)
 - Simulates Rogerian therapist
 - User: You are like my father in some ways
 - ELIZA: WHAT RESEMBLANCE DO YOU SEE
 - User: You are not very aggressive
 - ELIZA: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE...
 - Passes the Turing Test!! (sort of)
 - "You can fool some of the people...."
- Simple pattern matching technique
- True understanding requires deeper analysis & processing

Turing Test Revived

- "On the web, no one knows you're a...."
 - Problem: 'bots'
 - Automated agents swamp services
 - Challenge: Prove you're human
- Test: Something human can do, 'bot can't
- Solution: CAPTCHAs
 - "Completely Automated Public Turing Test To Tell Computers and Humans Apart"
 - Initially: distorted images: easy for human; hard for 'bot
 - Driven by perception
 - Drives improvements in AI vision, audio, OCR
 - "Arms race": better systems, harder CAPTCHAs
 - Images, word problems, etc

 What does HAL (of 2001, A Space Odyssey) need to know to converse?

- Dave: Open the pod bay doors, HAL.
- HAL: I'm sorry, Dave. I'm afraid I can't do that.

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
 - Dave: Open the pod bay doors, HAL.
 - HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Phonetics & Phonology (Ling 450/550)
 - Sounds of a language, acoustics
 - Legal sound sequences in words

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
 - Dave: Open the pod bay doors, HAL.
 - HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Morphology (Ling 570)
 - Recognize, produce variation in word forms
 - Singular vs. plural: Door + sg: → door; Door + plural
 → doors
 - Verb inflection: Be + 1st person, sg, present → am

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
 - Dave: Open the pod bay doors, HAL.
 - HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Part-of-speech tagging (Ling 570)
 - Identify word use in sentence
 - Bay (Noun) --- Not verb, adjective

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
 - Dave: Open the pod bay doors, HAL.
 - HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Syntax
 - (Ling 566: analysis;
 - Ling 570 chunking; Ling 571 parsing)
 - Order and group words in sentence
 - I'm I do, sorry that afraid Dave I can't.

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
 - Dave: Open the pod bay doors, HAL.
 - HAL: I'm sorry, Dave. I'm afraid I can't do that.

- Semantics (Ling 571)
 - Word meaning:
 - individual (lexical), combined (compositional)
- 'Open': AGENT cause THEME to become open;
- 'pod bay doors': (pod bay) doors

- What does HAL (of 2001, A Space Odyssey) need to know to converse?
 - Dave: Open the pod bay doors, HAL. (request)
 - HAL: I'm sorry, Dave. I'm afraid I can't do that. (statement)

- Pragmatics/Discourse/Dialogue (Ling 571)
 - Interpret utterances in context
 - Speech act (request, statement)
 - Reference resolution: I = HAL; that = 'open doors'
 - Politeness: I'm sorry, I'm afraid I can't

Language Processing Pipeline

Shallow vs Deep Processing

- Shallow processing (Ling 570)
 - Usually relies on surface forms (e.g., words)
 - Less elaborate linguistics representations
 - E.g. HMM POS-tagging; FST morphology
- Deep processing (Ling 571)
 - Relies on more elaborate linguistic representations
 - Deep syntactic analysis (Parsing)
 - Rich spoken language understanding (NLU)

Cross-cutting Themes

- Ambiguity
 - How can we select among alternative analyses?
- Evaluation
 - How well does this approach perform:
 - On a standard data set?
 - When incorporated into a full system?
- Multi-linguality
 - Can we apply this approach to other languages?
 - How much do we have to modify it to do so?

Ambiguity

- "I made her duck"
- Means....
 - I caused her to duck down
 - I made the (carved) duck she has
 - I cooked duck for her
 - I cooked the duck she owned
 - I magically turned her into a duck

Ambiguity: POS

- "I made her duck"
- Means....
 - I caused her to duck down
 - I made the (carved) duck she has
 - I cooked duck for her
 - I cooked the duck she owned
 - I magically turned her into a duck

Pron

Poss

Ambiguity: Syntax

- "I made her duck"
- Means....
 - I made the (carved) duck she has
 - ((VP (V made) (NP (POSS her) (N duck)))
 - I cooked duck for her
 - ((VP (V made) (NP (PRON her)) (NP (N (duck)))

Ambiguity: Semantics

- "I made her duck"
- Means....
 - I caused her to duck down
 - Make: AG cause TH to do sth
 - I cooked duck for her
 - Make: AG cook TH for REC
 - I cooked the duck she owned
 - Make: AG cook TH
 - I magically turned her into a duck
 - Duck: animal
 - I made the (carved) duck she has
 - Duck: duck-shaped figurine

Ambiguity

- Pervasive
- Pernicious
- Particularly challenging for computational systems
- Problem we will return to again and again in class

Course Information

http://courses.washington.edu/ling571

Syntax

Ling 571
Deep Processing Techniques for Natural Language Processing
January 4, 2017

Roadmap

- Sentence Structure
 - Motivation: More than a bag of words

- Representation:
 - Context-free grammars
 - Formal definition of context free grammars

Applications

- Shallow techniques useful, but limited
- Deeper analysis supports:
 - Grammar-checking and teaching
 - Question-answering
 - Information extraction
 - Dialogue understanding

Grammar and NLP

- Grammar in NLP is NOT prescriptive high school grammar
 - Explicit rules
 - Split infinitives, etc
- Grammar in NLP tries to capture structural knowledge of language of a native speaker
 - Largely implicit
 - Learned early, naturally

More than a Bag of Words

- Sentences are structured:
 - Impacts meaning:
 - Dog bites man vs man bites dog
 - Impacts acceptability:
 - Dog man bites

Constituency

- Constituents: basic units of sentences
 - word or group of words that acts as a single unit
 - Phrases:
 - Noun phrase (NP), verb phrase (VP), prepositional phrase (PP), etc
 - Single unit: type determined by head (e.g., $N \rightarrow NP$)

Representing Sentence Structure

- Captures constituent structure
 - Basic units
 - Phrases
 - Subcategorization
 - Argument structure
 - Components expected by verbs
 - Hierarchical

Representation: Context-free Grammars

- CFGs: 4-tuple
 - A set of terminal symbols: Σ
 - A set of non-terminal symbols: N
 - A set of productions P: of the form A $\rightarrow \alpha$
 - Where A is a non-terminal and α in (Σ U N)*
 - A designated start symbol S
- L =W|w in Σ * and S =>* w
 - Where S = > * w means S derives w by some seq

CFG Components

- Terminals:
 - Only appear as leaves of parse tree
 - Right-hand side of productions (rules) (RHS)
 - Words of the language
 - Cat, dog, is, the, bark, chase
- Non-terminals
 - Do not appear as leaves of parse tree
 - Appear on left or right side of productions (rules)
 - Constituents of language
 - NP, VP, Sentence, etc

Representation: Context-free Grammars

- Partial example
 - Σ: the, cat, dog, bit, bites, man
 - N: NP, VP, Nom, Det, V, N, Adj
 - P: S→NP VP; NP → Det Nom; Nom → N Nom|N;
 VP→V NP, N→cat, N→dog, N→man, Det→the, V→bit,
 V→bites

S

Parsing Goals

- Accepting:
 - Legal string in language?
 - Formally: rigid
 - Practically: degrees of acceptability
- Analysis
 - What structure produced the string?
 - Produce one (or all) parse trees for the string
- Will develop techniques to produce analyses of sentences
 - Rigidly accept (with analysis) or reject
 - Produce varying degrees of acceptability

Sentence-level Knowledge: Syntax

- Different models of language
 - Specify the expressive power of a formal language

Chomsky Hierarchy

Representing Sentence Structure

- Why not just Finite State Models?
 - Cannot describe some grammatical phenomena
 - Inadequate expressiveness to capture generalization
- Center embedding
 - Finite State: $A \rightarrow w^*; A \rightarrow w^*B$
 - Context-Free: $A \Rightarrow \alpha A \beta$
 - Allows recursion
 - The luggage arrived.
 - The luggage that the passengers checked arrived.
 - The luggage that the passengers that the storm delayed checked arrived.

Is Context-free Enough?

- Natural language provably not finite state
- Do we need context-sensitivity?
 - Many articles have attempted to demonstrate
 - Many failed, too
 - Solid proofs for Swiss German (Shieber)
- Key issue: Cross-serial dependencies: aⁿb^mcⁿd^m

Examples

```
.mer em Hans es huus hälfed aastriiche.
.we Hans/DAT the house/ACC helped paint.
... we helped Hans paint the house."
```

```
...mer d'chind em Hans es huus haend wele laa
...we the children/ACC Hans/DAT the house/ACC have wanted to let
nälfe aastriiche.
nelp paint.
```

"... we have wanted to let the children help Hans paint the house."

Verbs and their arguments can be ordered cross-serially arguments and verbs must match

Tree Adjoining Grammars

- Mildly context-sensitive (Joshi, 1979)
 - Motivation:
 - Enables representation of crossing dependencies
- Operations for rewriting
 - "Substitution" and "Adjunction"

TAG Example

۷Ř

Ad

quickly

۷P

