
CKY Parsing
Ling571

Deep Processing Approaches to NLP
January 11, 2017

Roadmap
�  Motivation:

�  Inefficiencies of parsing-as-search

�  Strategy: Dynamic Programming

�  Chomsky Normal Form
�  Weak and strong equivalence

�  CKY parsing algorithm

Bottom-Up Parsing
�  Try to find all trees that span the input

�  Start with input string
�  Book that flight.

�  Use all productions with current subtree(s) on RHS
�  E.g., N à Book; V à Book

�  Stop when spanned by S (or no more rules apply)

1/10/17
 Speech and Language Processing -
Jurafsky and Martin

Bottom-Up Search

1/10/17
 Speech and Language Processing -
Jurafsky and Martin

Bottom-Up Search

1/10/17
 Speech and Language Processing -
Jurafsky and Martin

Bottom-Up Search

1/10/17
 Speech and Language Processing -
Jurafsky and Martin

Bottom-Up Search

1/10/17
 Speech and Language Processing -
Jurafsky and Martin

Bottom-Up Search

Bottom-Up Search

Bottom-Up Search

Bottom-Up Search

Pros and Cons of
Bottom-Up Search

�  Pros:
�  Will not explore trees that don’t match input

�  Recursive rules less problematic
�  Useful for incremental/ fragment parsing

�  Cons:
�  Explore subtrees that will not fit full sentences

Parsing Challenges
�  Ambiguity

�  Repeated substructure

�  Recursion

Parsing Ambiguity
�  Many sources of parse ambiguity

�  Lexical ambiguity
�  Book/N; Book/V

�  Structural ambiguity: Main types:
�  Attachment ambiguity

�  Constituent can attach in multiple places
�  I shot an elephant in my pyjamas.

�  Coordination ambiguity
�  Different constituents can be conjoined

�  Old men and women

Ambiguity

 Speech and Language Processing -
Jurafsky and Martin

Disambiguation
�  Global ambiguity:

�  Multiple complete alternative parses
�  Need strategy to select correct one

�  Approaches exploit other information
�  Statistical

�  Some prepositional structs more likely to attach high/low
�  Some phrases more likely, e.g., (old (men and women))

�  Semantic
�  Pragmatic

�  E.g., elephants and pyjamas
�  Alternatively, keep all

�  Local ambiguity:
�  Ambiguity in subtree, resolved globally

Repeated Work
�  Top-down and bottom-up parsing both lead to repeated

substructures
�  Globally bad parses can construct good subtrees

�  But overall parse will fail
�  Require reconstruction on other branch

�  No static backtracking strategy can avoid

�  Efficient parsing techniques require storage of shared
substructure
�  Typically with dynamic programming

�  Example: a flight from Indianapolis to Houston on TWA

Shared Sub-Problems

1/10/17
 Speech and Language Processing -
Jurafsky and Martin

Shared Sub-Problems

1/10/17
 Speech and Language Processing -
Jurafsky and Martin

Shared Sub-Problems

1/10/17
 Speech and Language Processing -
Jurafsky and Martin

Shared Sub-Problems

1/10/17
 Speech and Language Processing -
Jurafsky and Martin

Recursion
�  Many grammars have recursive rules

�  E.g., S à S Conj S

�  In search approaches, recursion is problematic
�  Can yield infinite searches

�  Esp., top-down

Dynamic Programming
�  Challenge: Repeated substructure à Repeated work

�  Insight:
�  Global parse composed of parse substructures

�  Can record parses of substructures

�  Dynamic programming avoids repeated work by
tabulating solutions to subproblems
�  Here, stores subtrees

Parsing w/Dynamic
Programming

�  Avoids repeated work

�  Allows implementation of (relatively) efficient
parsing algorithms
�  Polynomial time in input length

�  Typically cubic () or less

�  Several different implementations
�  Cocke-Kasami-Younger (CKY) algorithm

�  Earley algorithm
�  Chart parsing

n3

Chomsky Normal Form
(CNF)

�  CKY parsing requires grammars in CNF

�  Chomsky Normal Form
�  All productions of the form:

�  A à B C, or

�  A à a

�  However, most of our grammars are not of this form
�  E.g., S à Wh-NP Aux NP VP

�  Need a general conversion procedure
�  Any arbitrary grammar can be converted to CNF

Grammar Equivalence and Form
�  Grammar equivalence

�  Weak: Accept the same language, May produce
different analyses

�  Strong: Accept same language, Produce same
structure

CNF Conversion
�  Three main conditions:

�  Hybrid rules:
�  INF-VP à to VP

�  Unit productions:
�  A à B

�  Long productions:
�  A à B C D

CNF Conversion
�  Hybrid rule conversion:

�  Replace all terminals with dummy non-terminals

�  E.g., INF-VP à to VP
�  INF-VP à TO VP; TO à to

�  Unit productions:
�  Rewrite RHS with RHS of all derivable non-unit

productions
�  If and B à w, then add A à w A⇒

∗

B

CNF Conversion
�  Long productions:

�  Introduce new non-terminals and spread over rules

�  S à Aux NP VP
�  S à X1 VP; X1 à Aux NP

�  For all non-conforming rules,
�  Convert terminals to dummy non-terminals
�  Convert unit productions

�  Binarize all resulting rules

CKY Parsing
�  Cocke-Kasami-Younger parsing algorithm:

�  (Relatively) efficient bottom-up parsing algorithm
based on tabulating substring parses to avoid
repeated work

�  Approach:
�  Use a CNF grammar

�  Build an (n+1) x (n+1) matrix to store subtrees
�  Upper triangular portion

�  Incrementally build parse spanning whole input string

Dynamic Programming in
CKY

�  Key idea:
�  For a parse spanning substring [i,j] , there exists

some k such there are parses spanning [i,k] and [k,j]
�  We can construct parses for whole sentence by building

up from these stored partial parses

�  So,
�  To have a rule A à B C in [i,j],

�  We must have B in [i,k] and C in [k,j], for some i<k<j
�  CNF grammar forces this for all j>i+1

