
PCFGs: Parsing &
Evaluation

Deep Processing Techniques for NLP
Ling 571

January 23, 2017

Roadmap
�  PCFGs:

�  Review: Definitions and Disambiguation

�  PCKY parsing
�  Algorithm and Example

�  Evaluation
�  Methods & Issues

�  Issues with PCFGs

PCFGs
�  Probabilistic Context-free Grammars

�  Augmentation of CFGs

Disambiguation
�  A PCFG assigns probability to each parse tree T for

input S.
�  Probability of T: product of all rules to derive T

P(T,S)= P(RHSi
i=1

n

∏ | LHSi)

P(T,S)= P(T)P(S |T) = P(T)

S à NP VP [0.8]
NP à Pron [0.35]
Pron à I [0.4]
VP à V NP PP [0.1]
V à prefer [0.4]
NP à Det Nom [0.2]
Det à a [0.3]
Nom à N [0.75]
N à flight [0.3]
PP à P NP [1.0]
P à on [0.2]
NP à NNP [0.3]
NNP à NWA [0.4]

S à NP VP [0.8]
NP à Pron [0.35]
Pron à I [0.4]
VP à V NP [0.2]
V à prefer [0.4]
NP à Det Nom [0.2]
Det à a [0.3]
Nom à Nom PP [0.05]
Nom à N [0.75]
N à flight [0.3]
PP à P NP [1.0]
P à on [0.2]
NP à NNP [0.3]
NNP à NWA [0.4]

Parsing Problem for PCFGs
�  Select T such that:

�  String of words S is yield of parse tree over S
�  Select tree that maximizes probability of parse

�  Extend existing algorithms: e.g., CKY
�  Most modern PCFG parsers based on CKY

�  Augmented with probabilities

T
∧

(S) = argmax
Ts.t,S=yield (T)

P(T)

Probabilistic CKY
�  Like regular CKY

�  Assume grammar in Chomsky Normal Form (CNF)
�  Productions:

�  A à B C or A à w

�  Represent input with indices b/t words
�  E.g., 0 Book 1 that 2 flight 3 through 4 Houston 5

�  For input string length n and non-terminals V
�  Cell[i,j,A] in (n+1)x(n+1)xV matrix contains

�  Probability that constituent A spans [i,j]

Probabilistic CKY Algorithm

PCKY Grammar Segment
�  S à NP VP [0.80]

�  NP à Det N [0.30]

�  VP à V NP [0.20]

�  V à includes [0.05]

�  Det à the [0.40]

�  Det à a [0.40]

�  N à meal [0.01]

�  N à flight [0.02]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.02
=.0024
[0,2]

[0,3]

[0,4]

S: 0.8*
0.000012*
0.0024
[0,5]

N: 0.02
[1,2]

[1,3]

[1,4]

[1,5]

V: 0.05

[2,3]

[2,4]

VP:
0.2*0.05*
0.0012=0.0
00012 [2,5]

Det: 0.4

[3,4]

NP:
0.3*0.4*0.01
=0.0012
[3,5]

N: 0.01
[4,5]

Learning Probabilities
�  Simplest way:

�  Treebank of parsed sentences
�  To compute probability of a rule, count:

�  Number of times non-terminal is expanded
�  Number of times non-terminal is expanded by given rule

�  Alternative: Learn probabilities by re-estimating
�  (Later)

P(α→ β |α) = Count(α→ β)
Count(α→ γ)

γ
∑

=
Count(α→ β)
Count(α)

Probabilistic Parser
Development Paradigm

�  Training:
�  (Large) Set of sentences with associated parses (Treebank)

�  E.g., Wall Street Journal section of Penn Treebank, sec 2-21
�  39,830 sentences

�  Used to estimate rule probabilities

�  Development (dev):
�  (Small) Set of sentences with associated parses (WSJ, 22)

�  Used to tune/verify parser; check for overfitting, etc.

�  Test:
�  (Small-med) Set of sentences w/parses (WSJ, 23)

�  2416 sentences
�  Held out, used for final evaluation

Parser Evaluation
�  Assume a ‘gold standard’ set of parses for test set

�  How can we tell how good the parser is?

�  How can we tell how good a parse is?
�  Maximally strict: identical to ‘gold standard’

�  Partial credit:
�  Constituents in output match those in reference

�  Same start point, end point, non-terminal symbol

Parseval
�  How can we compute parse score from constituents?

�  Multiple measures:
�  Labeled recall (LR):

�  # of correct constituents in hyp. parse

�  # of constituents in reference parse

�  Labeled precision (LP):
�  # of correct constituents in hyp. parse

�  # of total constituents in hyp. parse

Parseval (cont’d)
�  F-measure:

�  Combines precision and recall

�  F1-measure: β=1

�  Crossing-brackets:
�  # of constituents where reference parse has

bracketing ((A B) C) and hyp. has (A (B C))

Fβ =
(β 2 +1)PR
β 2 (P + R)

F1 =
2PR
(P + R)

Precision and Recall
�  Gold standard

�  (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))

�  Hypothesis
�  (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))

�  G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)

�  H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4)

�  LP: 4/5

�  LR: 4/5

�  F1: 4/5

State-of-the-Art Parsing
�  Parsers trained/tested on Wall Street Journal PTB

�  LR: 90%+;

�  LP: 90%+;
�  Crossing brackets: 1%

�  Standard implementation of Parseval: evalb

Evaluation Issues
�  Constituents?

�  Other grammar formalisms
�  LFG, Dependency structure, ..

�  Require conversion to PTB format

�  Extrinsic evaluation
�  How well does this match semantics, etc?

