
PCFGs: Parsing & 
Evaluation 

Deep Processing Techniques for NLP 
Ling 571 

January 23, 2017 



Roadmap 
�  PCFGs: 

�  Review: Definitions and Disambiguation 

�  PCKY parsing 
�  Algorithm and Example 

�  Evaluation 
�  Methods & Issues 

�  Issues with PCFGs 



PCFGs 
�  Probabilistic Context-free Grammars 

�  Augmentation of  CFGs  



Disambiguation 
�  A PCFG assigns probability to each parse tree T for 

input S. 
�  Probability of  T: product of  all rules to derive T 

P(T,S)= P(RHSi
i=1

n

∏ | LHSi )

P(T,S)= P(T )P(S |T ) = P(T )



S à NP VP         [0.8] 
NP à Pron         [0.35] 
Pron à I             [0.4] 
VP à V NP PP    [0.1] 
V à prefer          [0.4] 
NP à Det Nom   [0.2] 
Det à a              [0.3] 
Nom à N           [0.75] 
N à flight           [0.3] 
PP à P NP         [1.0] 
P à on               [0.2] 
NP à NNP         [0.3] 
NNP à NWA      [0.4] 

S à NP VP         [0.8] 
NP à Pron         [0.35] 
Pron à I             [0.4] 
VP à V NP         [0.2] 
V à prefer          [0.4] 
NP à Det Nom   [0.2] 
Det à a              [0.3] 
Nom à Nom PP [0.05] 
Nom à N           [0.75] 
N à flight           [0.3] 
PP à P NP         [1.0] 
P à on               [0.2] 
NP à NNP         [0.3] 
NNP à NWA      [0.4] 



Parsing Problem for PCFGs 
�  Select T such that: 

�  String of  words S is yield of  parse tree over S 
�  Select tree that maximizes probability of  parse 

�  Extend existing algorithms: e.g., CKY  
�  Most modern PCFG parsers based on CKY 

�  Augmented with probabilities 

T
∧

(S) = argmax
Ts.t,S=yield (T )

P(T )



Probabilistic CKY 
�  Like regular CKY  

�  Assume grammar in Chomsky Normal Form (CNF) 
�  Productions: 

�  A à B C or A à w 

�  Represent input with indices b/t words 
�  E.g., 0 Book 1 that 2 flight 3 through 4 Houston 5 

�  For input string length n and non-terminals V 
�  Cell[i,j,A] in (n+1)x(n+1)xV  matrix contains 

�  Probability that constituent A spans [i,j] 



Probabilistic CKY Algorithm 



PCKY Grammar Segment 
�  S à NP VP [0.80] 

�  NP à Det N [0.30] 

�  VP à V NP [0.20] 

�  V à includes [0.05] 

�  Det à the [0.40] 

�  Det à a    [0.40] 

�  N  à meal [0.01] 

�  N  à flight [0.02] 



PCKY Matrix: 
The flight includes a meal 

Det: 0.4 
 
[0,1] 

NP: 
0.3*0.4*0.02
=.0024 
[0,2] 

 
 
 
[0,3] 

 
 
 
[0,4] 

S: 0.8* 
0.000012*  
0.0024 
[0,5] 

N: 0.02 
[1,2] 

 
[1,3] 

 
[1,4] 

 
[1,5] 

V: 0.05 
 
[2,3] 

 
 
[2,4] 

VP: 
0.2*0.05* 
0.0012=0.0
00012 [2,5] 

Det: 0.4 
 
[3,4] 

NP: 
0.3*0.4*0.01
=0.0012 
[3,5] 

N: 0.01 
[4,5] 



Learning Probabilities 
�  Simplest way:  

�  Treebank of  parsed sentences 
�  To compute probability of  a rule, count: 

�  Number of  times non-terminal is expanded 
�  Number of  times non-terminal is expanded by given rule 

�  Alternative: Learn probabilities by re-estimating 
�  (Later) 

P(α→ β |α) = Count(α→ β)
Count(α→ γ )

γ
∑

=
Count(α→ β)
Count(α)



Probabilistic Parser 
Development Paradigm 

�  Training: 
�  (Large) Set of  sentences with associated parses (Treebank) 

�  E.g., Wall Street Journal section of  Penn Treebank, sec 2-21 
�  39,830 sentences 

�  Used to estimate rule probabilities 

�  Development (dev): 
�  (Small) Set of  sentences with associated parses (WSJ, 22) 

�  Used to tune/verify parser; check for overfitting, etc. 

�  Test: 
�  (Small-med) Set of  sentences w/parses (WSJ, 23) 

�  2416 sentences 
�  Held out, used for final evaluation 



Parser Evaluation 
�  Assume a ‘gold standard’ set of  parses for test set 

�  How can we tell how good the parser is? 

�  How can we tell how good a parse is? 
�  Maximally strict:  identical to ‘gold standard’ 

�  Partial credit: 
�  Constituents in output match those in reference 

�  Same start point, end point, non-terminal symbol 

 



Parseval 
�  How can we compute parse score from constituents? 

�  Multiple measures: 
�  Labeled recall (LR):  

�  # of  correct constituents in hyp. parse 

�  # of  constituents in reference parse 

�  Labeled precision (LP): 
�  # of  correct constituents in hyp. parse 

�  # of  total constituents in hyp. parse 



Parseval (cont’d) 
�  F-measure:  

�  Combines precision and recall 

�  F1-measure: β=1 

�  Crossing-brackets: 
�  # of  constituents where reference parse has 

bracketing ((A B) C) and hyp. has (A (B C)) 

Fβ =
(β 2 +1)PR
β 2 (P + R)

F1 =
2PR
(P + R)



Precision and Recall 
�  Gold standard 

�  (S (NP (A a) ) (VP (B b) (NP (C c)) (PP (D d)))) 

�  Hypothesis 
�  (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d))))) 

�  G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4) 

�  H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4) 

�  LP: 4/5 

�  LR: 4/5 

�  F1: 4/5 



State-of-the-Art Parsing 
�  Parsers trained/tested on Wall Street Journal PTB 

�  LR: 90%+;  

�  LP: 90%+;  
�  Crossing brackets: 1% 

�  Standard implementation of  Parseval: evalb 



Evaluation Issues 
�  Constituents? 

�  Other grammar formalisms   
�  LFG, Dependency structure, .. 

�  Require conversion to PTB format 

�  Extrinsic evaluation 
�  How well does this match semantics, etc? 


