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PCFGs

® Probabilistic Context-free Grammars
¢ Augmentation of CFGs

N a set of non-terminal symbols (or variables)

2 a set of terminal symbols (disjoint from N)

R aset of rules or productions, each of the form A — S| [p],

where A 1s a non-terminal,

B is a string of symbols from the infinite set of strings (ZUN ),

and p is a number between 0 and 1 expressing P(f3|A)

S adesignated start symbol




Disambiguation

e A PCFG assigns probability to each parse tree T for
input S.
® Probability of T. product of all rules to derive T

P(T,S)= HP(RHSi | LHS,)
=1

P(T,S)= P(T)P(S|T) = P(T)
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Parsing Problem for PCFGs

® Select T such that:

YA" (§)= argmax P(T)

Ts.t,S=yield(T)

e String of words S is yield of parse tree over S
® Select tree that maximizes probability of parse

® Extend existing algorithms: e.g., CKY

® Most modern PCFG parsers based on CKY
®* Augmented with probabilities




Probabilistic CKY

® Like regular CKY
® Assume grammar in Chomsky Normal Form (CNF)

® Productions:
o A>BCorA->w

® Represent input with indices b/t words
* E.g., o Book ; that , flight ; through , Houston

® For input string length n and non-terminals V
e Cell[i,j,A] in (n+1)x(n+1)xV matrix contains
® Probability that constituent A spans [i,j]




Probabilistic CKY Algorithm

tion PROBABILISTIC-CKY (words,grammar) returns most probable parse
and 1ts probability

' j<—from 1 to LENGTH(words) do
forall { A| A — words[j| € grammar}
table[j—1, j,Al— P(A — words|j|)
for i —from j — 2 downto O do
fork—i+1to j—1do
forall { A|A — BC € grammar,
and rableli,k,B] > 0and rablelk, j,C] > 0}
if (table[i jA] < P(A — BC) x tableli k,B] x table[kj,C]) then
tableli j,A]— P(A — BC) x table[i,k.B] % table[k.j,C]
backli j,A]— {k,B,C}
return BUILD_TREE(back[1l, LENGTH(words), S]), table[1, LENGTH(words), S]




PCKY Grammar Segment

e S-> NPVP[0.80] ® Det > the [0.40]
® NP - Det N [0.30] ® Det>a [0.40]
e VP > V NP [0.20]

® V - includes [0.05] ® N - meal [0.01]

e N - flight [0.02]




PCKY Matrix:

The flight includes a meal

Det: 0.4 NP: S: 0.8%
0.3%0.4*0.02 0.000012*
[0,1] =.0024 0.0024
[0,2] [0,3] [0,4] [0,5]
N: 0.02
[1,2] [1,3] [1,4] [1,5]
V: 0.05 VP:
0.2*0.05*%
[2,3] [2,4] 0.0012=0.0
00012 [2,5]
Det: 0.4 NP:
0.3*0.4*0.01
[3,4] =0.0012
[3,5]
N: 0.01

[4,5]




Learning Probabilities

® Simplest way:
® Treebank of parsed sentences

® Jo compute probability of a rule, count:
® Number of times non-terminal is expanded
® Number of times non-terminal is expanded by given rule

Count(a — )  Count(a — p)
Pla— fpla)= =
(@=pla) EyCount(a —y) Count()

® Alternative: Learn probabilities by re-estimating
* (Later)




Probabilistic Parser
Development Paradigm

® Training:
® (Large) Set of sentences with associated parses (Treebank)

e E.g., Wall Street Journal section of Penn Treebank, sec 2-21
e 39 830 sentences

® Used to estimate rule probabilities

® Development (dev):
® (Small) Set of sentences with associated parses (WSJ, 22)
® Used to tune/verify parser; check for overfitting, etc.

® Test:
® (Small-med) Set of sentences w/parses (WSJ, 23)
e 2416 sentences
® Held out, used for final evaluation




Parser Evaluation

® Assume a ‘gold standard’ set of parses for test set

® How can we tell how good the parser is?

® How can we tell how good a parse is?
e Maximally strict: identical to ‘gold standard’

® Partial credit:

® Constituents in output match those in reference
e Same start point, end point, non-terminal symbol




Parseval

® How can we compute parse score from constituents?

® Multiple measures:

® | abeled recall (LR):

® # of correct constituents in hyp. parse
® # of constituents in reference parse

® | abeled precision (LP):
® # of correct constituents in hyp. parse

® # of total constituents in hyp. parse




Parseval (cont’d)

® F-measure:
e Combines precision and recall

(B” +1)PR
Fb’= >
PB°(P+R)
® Fl-measure: f=1 F = 2L
(P+R)

® Crossing-brackets:

® # of constituents where reference parse has
bracketing ((A B) C) and hyp. has (A (B C))

el T




Precision and Recall

® (Gold standard
® (S(NP (Aa)) (VP (B b) (NP (Cc)) (PP (D d))))

® Hypothesis
* (S(NP (Aa)) (VP (Bb)(NP(Cc)(PP(Dd))))

e G:S(0,4) NP(O,1) VP (1,4) NP (2,3) PP(3,4)
e H:5(0,4) NP(O,1) VP (1,4) NP (2,4) PP(3,4)
e |P:4/5
e |[R:4/5

B F1: 4/5




State-of-the-Art Parsing

® Parsers trained/tested on Wall Street Journal PTB
e | R: 909%+;
e | P:90%+;
® Crossing brackets: 19%

e Standard implementation of Parseval: evalb




Evaluation Issues

® Constituents?

® Other grammar formalisms
® | FG, Dependency structure, ..
® Require conversion to PTB format

® [ xtrinsic evaluation
® How well does this match semantics, etc?




