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Roadmap

® Probabilistic Parsing:
® PCFG issues

® Modeling improvements on PCFGs
® Parent annotation
e |exicalization
® Markovization
® Reranking

e [fficiency improvements on PCFGs
® Beam thresholding
® Heuristic filtering




Issues with PCFGs

® |ndependence assumptions:
® Rule expansion is context-independent
® Allows us to multiply probabilities

® [s this valid?

| Pronoun____|Non-pronoun

Subject 919% 9%
Object 349, 669,
® |n Treebank: roughly equi-probable
® How can we handle this?
® Condition on Subj/0Obj with parent annotation




Issues with PCFGs

® [nsufficient lexical conditioning
® Present in pre-terminal rules

® Are there cases where other rules should be
conditioned on words?
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Parser Issues

® PCFGs make many (unwarranted) independence
assumptions

e Structural Dependency
® NP - Pronoun: much more likely in subject position

® | exical Dependency
® Verb subcategorization
® Coordination ambiguity




Improving PCFGs:
Structural Dependencies

® How can we capture Subject/Object asymmetry?
® £.g., NPy, Pronvs NPy, >Pron

® Parent annotation:
® Annotate each node with parent in parse tree
 E.g, NP*Svs NP*VP
® Also annotate pre-terminals:

e RB"ADVP vs RB"VP
e [IN"SBAR vs IN"PP

® Can also split rules on other conditions




Parent Annotation
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Parent Annotation

® Advantages:
® Captures structural dependency in grammars

® Disadvantages:

® |ncreases number of rules in grammar
® Decreases amount of training per rule

e Strategies to search for optimal # of rules




Improving PCFGs:
Lexical Dependencies

® | exicalized rules:

Best known parsers: Collins, Charniak parsers

Each non-terminal annotated with its lexical head
® E.g. verb with verb phrase, noun with noun phrase
Each rule must identify RHS element as head

®* Heads propagate up tree

Conceptually like adding 1 rule per head value

* VP(dumped) - VBD(dumped)NP(sacks)PP(into)
®* VP(dumped) - VBD(dumped)NP(cats)PP(into)



Lexicalized PCFGs

®* Also, add head tag to non-terminals
® Head tag: Part-of-speech tag of head word
®* VP(dumped) - VBD(dumped)NP(sacks)PP(into)

* VP(dumped,VBD) -
VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)

® Two types of rules:

® | exical rules: pre-terminal > word
® Deterministic, probability 1

® |nternal rules: all other expansions
® Must estimate probabilities
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Lexicalized Parse Tree
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PLCFGs

® [ssue: Too many rules
® No way to find corpus with enough examples

® (Partial) Solution: Independence assumed

e Condition rule on
® Category of LHS, head

® Condition head on
e Category of LHS and parent’s head

P(T,5)= Hp(f’(n) |n,h(n))* p(h(n) | n,h(m(n)))

neT
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Disambiguation Example
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Disambiguation Example

P(VP — VBDNPPP | VP, dumped) p(VP — VBDNP |VP,dumped)
Y ,CP(dumped) = p) Y C(VP(dumped) — p)

=6/9=0.67 =0/9=0

p(into | PP,dumped) p(into| PP,sacks)

_ C(X(dumped) — ...PP(into)..) _ C(X(sacks) —...PP(into)...)

=2/9=0.22 =0/0




CNF Factorization &
Markovization

® CNF factorization:
® Converts n-ary branching to binary branching

® Can maintain information about original structure
® Neighborhood history and parent

® |ssue:

® Potentially explosive
e |f keep all context: 72 - 10K non-terminals!!!

e How much context should we keep?
* What Markov order?

el T




Different Markov Orders
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Markovization & Costs

(Mohri & Roark 2006)

PCEG Time(s) | Words's | V|| |P|| LIR| LP| E
Right Factored BET 67| 005 [0 [0 [ B3T3
Rieht-Factored, Markov order-2 D0I [ A9 A9 1160 [ &3 [ 738 [ T3
Risht Factored, Markov order-] W T S [ 654 [0 [ B0 [ T05
Right factored, Markov order0 W6 | 1571 99| 3803 | 612 | 655 | 633
Parent.amnotated, Right factored, Markov order-2 | 7510 | 43 | 5876 | 20444 | 162 | 183 | 712




Improving PCFGs:
Tradeofts

® Tensions:
® |ncrease accuracy:

® |ncrease specificity
e F.g. Lexicalizing, Parent annotation, Markovization, etc

® |ncreases grammar
® |ncreases processing times
® |ncreases training data requirements

~ *®* How can we balance?




Efficiency

e PCKY is |G|n3
® Grammar can be huge

® Grammar can be extremely ambiguous
® 100s of analyses not unusual, esp. for long sentences

® However, only care about best parses
® QOthers can be pretty bad

® Can we use this to improve efficiency?




Beam Thresholding

® |nspired by beam search algorithm

® Assume low probability partial parses unlikely to
yield high probability overall
o Keep only top k most probably partial parses

® Retain only k choices per cell
® For large grammars, could be 50 or 100
® For small grammars, 5 or 10




Heuristic Filtering

Intuition: Some rules/partial parses are unlikely to
end up in best parse. Don’t store those in table.

Exclusions:
® | ow frequency: exclude singleton productions

® | ow probability: exclude constituents x s.t. p(x) <10-200

® | ow relative probability:
® Exclude x if there exists y s.t. p(y) > 100 * p(x)




Reranking

® [ssue: Locality
e PCFG probabilities associated with rewrite rules
® Context-free grammars
® Approaches create new rules incorporating context:
® Parent annotation, Markovization, lexicalization

® (Other problems:
® |ncrease rules, Sparseness

® Need approach that incorporates broader, global info




Discriminative
Parse Reranking

® (General approach:
® Parse using (L)PCFG
® (Obtain top-N parses
® Re-rank top-N parses using better features

® Discriminative reranking

® Use arbitrary features in reranker (MaxEnt)

® E.g. right-branching-ness, speaker identity, conjunctive
parallelism, fragment frequency, etc




Reranking Effectiveness

How can reranking improve?
® N-best includes the correct parse

Estimate maximum improvement

® Oracle parse selection
® Selects correct parse from N-best
® |f it appears

E.g. Collins parser (2000)

® Base accuracy: 0.897
® QOracle accuracy on 50-best: 0.968

Discriminative reranking: 0.917




