Dependency Grammars
and Parsers

Deep Processing for NLP
Ling57/1
January 30, 2017

Roadmap

® Dependency Grammars
® Definition
® Motivation:
e Limitations of Context-Free Grammars

® Dependency Parsing
® By conversion to CFG
e By Graph-based models
® By transition-based parsing

Dependency Grammar
® CFGs:

® Phrase-structure grammars
® Focus on modeling constituent structure

® Dependency grammars:
e Syntactic structure described in terms of
* Words
® Syntactic/Semantic relations between words

Dependency Parse

® A dependency parse is a tree, where

® Nodes correspond to words in utterance

® Fdges between nodes represent dependency relations
® Relations may be labeled (or not)

Dependency Relations

Argument Dependencies

Description

nsubj
csubj
dobj
iobj
pobj

nominal subject
clausal subject
direct object
indirect object
object of preposition

Modifier Dependencies

Description

tmod

appos

det
prep

temporal modifier
appositional modifier
determiner
prepositional modifier

Dependency Parse Example
®* They hid the letter on the shelf

hid
/N
nsubj dobj

¥ R

They letter
/ N\

det on

¥ 4
the sheU

Why Dependency Grammar?

® More natural representation for many tasks

® (Clear encapsulation of predicate-argument structure
® Phrase structure may obscure, e.g. wh-movement

® (Good match for question-answering, relation extraction
® Who did what to whom

® Build on parallelism of relations between question/relation
specifications and answer sentences

Why Dependency Grammar?

® Easier handling of flexible or free word order

® How does CFG handle variations in word order?
® Adds extra phrases structure rules for alternatives
® Minor issue in English, explosive in other langs

* What about dependency grammar?
® No difference: link represents relation
® Abstracts away from surface word order

Why Dependency Grammar?

® Natural efficiencies:
® CFG: Must derive full trees of many non-terminals

® Dependency parsing:
® For each word, must identify

e Syntactic head, h
® Dependency label, d

® |nherently lexicalized
® Strong constraints hold between pairs of words

Summary

® Dependency grammar balances complexity and
expressiveness

e Sufficiently expressive to capture predicate-argument
structure

e Sufficiently constrained to allow efficient parsing

Conversion

® Can convert phrase structure to dependency trees
® Unlabeled dependencies

® Algorithm:
® |dentify all head children in PS tree

® Make head of each non-head-child depend on head of
head-child

S
.-'-"—---\
NP VP
A A
JJ NN VBD NP
Economic news had NP PP
/\ A
JJ NN P NP
I I I —
little impact on JJ NNS
I I
financial markets

S
f\
NP VP
A A
JJ NN VBD NP
Economic news had NP PP

A e —

JJo NN P NP
I I I —

little impact on JJ NNS

I I

financial markets

had
f\
news impact
| T~
economic little on
I
markets
I
financial

Dependency Parsing

® Three main strategies:
® Convert dependency trees to PS trees
® Parse using standard algorithms O(n3)

® Employ graph-based optimization
* Weights learned by machine learning

® Shift-reduce approaches based on current word/state
® Attachment based on machine learning

Parsing by PS Conversion

e Can map any projective dependency tree to PS tree
® Non-terminals indexed by words
® “Projective”; no crossing dependency arcs for ordered words

PRED

ATT SB)

mr\
PC

hearing IS scheduled on Ssue

Dep to PS Tree Conversion

® For each node w with outgoing arcs,

® Convert the subtree w and its dependents t;,..,t, to

® New subtree rooted at X,, with child w and
® Subtrees at t;,..,t, in the original sentence order

Dep to PS Tree Conversion

E.g., for ‘effect’

Right

little effect on

su btree

o

Dep to PS Tree Conversion

* What about the dependency labels?
® Attach labels to non-terminals associated with non-heads
= Eg XIit’tle9 XIit’cle:nmod

® Doesn’t create typical PS trees

® Does create fully lexicalized, context-free trees
® Also labeled

® Can be parsed with any standard CFG parser
e [.g. CKY, Earley

Full Example Trees

ROOT
arked
Xdog barked Xat X.
N |
/-\ /\ Xthe dog at Xcat
/
ROOT The dog Dbarked at the cat . Xthe cat

the

_

Graph-based Dependency Parsing

® Goal: Find the highest scoring dependency tree T
for sentence S

e |f Sis unambiguous, T is the correct parse.
e |f Sis ambiguous, T is the highest scoring parse.

® Where do scores come from?
® Weights on dependency edges by machine learning
® | earned from large dependency treebank

® Where are the grammar rules?
® There aren’t any; data-driven processing

Graph-based Dependency Parsing

® Map dependency parsing to maximum spanning tree

® |dea:

e Build initial graph: fully connected
® Nodes: words in sentence to parse

e Edges: Directed edges between all words
e + Edges from ROOT to all words

® |dentify maximum spanning tree
® Tree s.t. all nodes are connected
® Select such tree with highest weight

® Arc-factored model: Weights depend on end nodes & link
o Weight of tree is sum of participating arcs

Initial Tree

ROOT\IO
Lo

11

» Sentence: John saw Mary (McDonald et al, 2005)
» All words connected; ROOT only has outgoing arcs

Goal: Remove arcs to create a tree covering all words
» Resulting tree is dependency parse

Maximum Spanning Tree

® McDonald et al, 2005 use variant of Chu-Liu-Edmonds
algorithm for MST (CLE)

e Sketch of algorithm:
® For each node, greedily select incoming arc with max w
® [f the resulting set of arcs forms a tree, this is the MST.
® |f not, there must be a cycle.
e “Contract” the cycle: Treat it as a single vertex
® Recalculate weights into/out of the new vertex
® Recursively do MST algorithm on resulting graph

® Running time: naive: O(n3); Tarjan: O(n?)
® Applicable to non-projective graphs

Initial Tree

P

Iohn‘/‘,'{) ‘\ﬂ/Mary

ll

- _—

CLE: Step 1

® Find maximum incoming arcs

ROOT\I{)
® |s the result a tree? 9 saw*-ﬂo\
* No /
~~—_3 v
® |s there a cycle? _/

® Yes, John/saw

CLE: Step 2

® Since there’s a cycle:

ROOT —.10
e Contract cycle & reweight 9(N\ fﬂg\

saw
® John+saw as single vertex Jolm‘/-"6 Mary
I —
® Calculate weights in & out as: b
® Maximum based on internal arc 9
® and original nodes ROOT\4‘O

® Recurse saw 30\
John - 3\\/Mary ’

Calculating Graph

\O

ROOT\I‘O ROOT\I‘O
9 saw saw
(Jénznﬁ_‘:ﬁ) ‘;_I:t‘ary <‘ J ohn‘/f0 &ary
N —— N ——

11 11

s(Mary, C) 11+20 = 31 s(ROOT, C) 10+30 = 40

CLE: Recursive Step

® |n new graph, find graph of
® Max weight incoming arc for each word

® |s it atree? Yes!
e MST, but must recover internal arcs =» parse

CLE: Recovering Graph

® Found maximum spanning tree
® Need to ‘pop’ collapsed nodes

® Expand “ROOT - John+saw” = 40

* MST and complete dependency parse

ROOT—40 ROOT=0
W

y Saw 3

v S

’ John Mary

Learning Weights

®* Weights for arc-factored model learned from corpus
® Weights learned for tuple (w;,w;,l)

® McDonald et al, 2005 employed discriminative ML
® Perceptron algorithm or large margin variant

® QOperates on vector of local features

Features for Learning Weights

® Simple categorical features for (w;,L,w,) including:

ldentity of w; (or char 5-gram prefix), POS of w,
Identity of w,(or char 5-gram prefix), POS of w;
Label of L, direction of L

Sequence of POS tags b/t w;,w,

Number of words b/t Wi, W,

POS tag of w,;,POS tag of w,,,

POS tag of w;;, POS tag of w,,

® Features conjoined with direction of attachment
and distance b/t words

Dependency Parsing

® Dependency grammars:
e Compactly represent pred-arg structure
® | exicalized, localized
e Natural handling of flexible word order

® Dependency parsing:
® (Conversion to phrase structure trees
® Graph-based parsing (MST), efficient non-proj O(n?)
® Transition-based parser

® MALTparser: very efficient O(n)
® Optimizes local decisions based on many rich features

