
Dependency Grammars
and Parsers

Deep Processing for NLP
Ling571

January 30, 2017

Roadmap
�  Dependency Grammars

�  Definition

�  Motivation:
�  Limitations of Context-Free Grammars

�  Dependency Parsing
�  By conversion to CFG
�  By Graph-based models

�  By transition-based parsing

Dependency Grammar
�  CFGs:

�  Phrase-structure grammars

�  Focus on modeling constituent structure

�  Dependency grammars:
�  Syntactic structure described in terms of

�  Words

�  Syntactic/Semantic relations between words

Dependency Parse
�  A dependency parse is a tree, where

�  Nodes correspond to words in utterance

�  Edges between nodes represent dependency relations
�  Relations may be labeled (or not)

1/29/17
 Speech and Language Processing -
Jurafsky and Martin 5

Dependency Relations

Dependency Parse Example
�  They hid the letter on the shelf

Why Dependency Grammar?
�  More natural representation for many tasks

�  Clear encapsulation of predicate-argument structure
�  Phrase structure may obscure, e.g. wh-movement

�  Good match for question-answering, relation extraction
�  Who did what to whom

�  Build on parallelism of relations between question/relation
specifications and answer sentences

Why Dependency Grammar?
�  Easier handling of flexible or free word order

�  How does CFG handle variations in word order?
�  Adds extra phrases structure rules for alternatives

�  Minor issue in English, explosive in other langs

�  What about dependency grammar?
�  No difference: link represents relation

�  Abstracts away from surface word order

Why Dependency Grammar?
�  Natural efficiencies:

�  CFG: Must derive full trees of many non-terminals

�  Dependency parsing:
�  For each word, must identify

�  Syntactic head, h

�  Dependency label, d

�  Inherently lexicalized
�  Strong constraints hold between pairs of words

Summary
�  Dependency grammar balances complexity and

expressiveness

�  Sufficiently expressive to capture predicate-argument
structure

�  Sufficiently constrained to allow efficient parsing

Conversion
�  Can convert phrase structure to dependency trees

�  Unlabeled dependencies

�  Algorithm:
�  Identify all head children in PS tree

�  Make head of each non-head-child depend on head of
head-child

Dependency Parsing
�  Three main strategies:

�  Convert dependency trees to PS trees
�  Parse using standard algorithms O(n3)

�  Employ graph-based optimization
�  Weights learned by machine learning

�  Shift-reduce approaches based on current word/state
�  Attachment based on machine learning

Parsing by PS Conversion
�  Can map any projective dependency tree to PS tree

�  Non-terminals indexed by words
�  “Projective”: no crossing dependency arcs for ordered words

Dep to PS Tree Conversion
�  For each node w with outgoing arcs,

�  Convert the subtree w and its dependents t1,..,tn to

�  New subtree rooted at Xw with child w and
�  Subtrees at t1,..,tn in the original sentence order

Dep to PS Tree Conversion

Xeffect

Xlittle Xon

little on Right
subtree

effect

E.g., for ‘effect’

Dep to PS Tree Conversion
�  What about the dependency labels?

�  Attach labels to non-terminals associated with non-heads

�  E.g. Xlittleè Xlittle:nmod

�  Doesn’t create typical PS trees
�  Does create fully lexicalized, context-free trees

�  Also labeled

�  Can be parsed with any standard CFG parser
�  E.g. CKY, Earley

Full Example Trees

Example from J. Moore, 2013

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

�  Where do scores come from?
�  Weights on dependency edges by machine learning
�  Learned from large dependency treebank

�  Where are the grammar rules?
�  There aren’t any; data-driven processing

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse
�  Edges: Directed edges between all words

�  + Edges from ROOT to all words

�  Identify maximum spanning tree
�  Tree s.t. all nodes are connected
�  Select such tree with highest weight
�  Arc-factored model: Weights depend on end nodes & link

�  Weight of tree is sum of participating arcs

Initial Tree

•  Sentence: John saw Mary (McDonald et al, 2005)
•  All words connected; ROOT only has outgoing arcs

•  Goal: Remove arcs to create a tree covering all words
•  Resulting tree is dependency parse

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-Edmonds

algorithm for MST (CLE)

�  Sketch of algorithm:
�  For each node, greedily select incoming arc with max w
�  If the resulting set of arcs forms a tree, this is the MST.
�  If not, there must be a cycle.

�  “Contract” the cycle: Treat it as a single vertex
�  Recalculate weights into/out of the new vertex
�  Recursively do MST algorithm on resulting graph

�  Running time: naïve: O(n3); Tarjan: O(n2)
�  Applicable to non-projective graphs

Initial Tree

CLE: Step 1
�  Find maximum incoming arcs

�  Is the result a tree?
�  No

�  Is there a cycle?
�  Yes, John/saw

CLE: Step 2
�  Since there’s a cycle:

�  Contract cycle & reweight

�  John+saw as single vertex

�  Calculate weights in & out as:
�  Maximum based on internal arcs

�  and original nodes

�  Recurse

Calculating Graph

CLE: Recursive Step
�  In new graph, find graph of

�  Max weight incoming arc for each word

�  Is it a tree? Yes!
�  MST, but must recover internal arcs è parse

CLE: Recovering Graph
�  Found maximum spanning tree

�  Need to ‘pop’ collapsed nodes

�  Expand “ROOT à John+saw” = 40

�  MST and complete dependency parse

Learning Weights
�  Weights for arc-factored model learned from corpus

�  Weights learned for tuple (wi,wj,l)

�  McDonald et al, 2005 employed discriminative ML
�  Perceptron algorithm or large margin variant

�  Operates on vector of local features

Features for Learning Weights
�  Simple categorical features for (wi,L,wj) including:

�  Identity of wi (or char 5-gram prefix), POS of wi

�  Identity of wj (or char 5-gram prefix), POS of wj
�  Label of L, direction of L

�  Sequence of POS tags b/t wi,wj
�  Number of words b/t wi,wj
�  POS tag of wi-1,POS tag of wi+1

�  POS tag of wj-1, POS tag of wj+1

�  Features conjoined with direction of attachment
and distance b/t words

Dependency Parsing
�  Dependency grammars:

�  Compactly represent pred-arg structure

�  Lexicalized, localized
�  Natural handling of flexible word order

�  Dependency parsing:
�  Conversion to phrase structure trees

�  Graph-based parsing (MST), efficient non-proj O(n2)
�  Transition-based parser

�  MALTparser: very efficient O(n)
�  Optimizes local decisions based on many rich features

