Computational Semantics

Deep Processing for NLP Ling 571 February 6, 2017

Roadmap

- Motivation: Dialog Systems
- Key challenges
- Meaning representation
 - Representational requirements
 - First-order logic
 - Syntax & Semantics
 - Representing compositional meaning

Dialogue Systems

User: What do I have on Thursday?

```
Parse:
(S)
(Q-WH-Obj)
(Whwd What)
(Aux do )
(NP (Pron I))
(VP/NP (V have)
(NP/NP *t*)
(PP (Prep on)
(NP (N Thursday))))))
```

Dialogue Systems

- Parser:
 - Yes, it's grammatical!
 - Here's the structure!
- System: Great, but what am I supposed to DO?!

Need to associate meaning with structure

Dialogue Systems

```
(S
(Q-WH-Obj Action: check; cal: USER; Date:Thursday
(Whwd What)
(Aux do )
(NP (Pron I)) Cal: USER
(VP/NP (V have)
(NP/NP *t*)
(PP (Prep on)
(NP (N Thursday)))))) Date: Thursday
```

Natural Language

Syntax: Determine the structure of natural language input

Semantics: Determine the meaning of natural language input

Tasks for Semantics

- Semantic interpretation required for many tasks
 - Answering questions
 - Following instructions in a software manual
 - Following a recipe
- Requires more than phonology, morphology, syntax
- Must link linguistic elements to world knowledge

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - The protests became bloody.

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - The protests became bloody.
 - The protests had been peaceful.

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - The protests became bloody.
 - The protests had been peaceful.
 - Crowds oppose the government.

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - The protests became bloody.
 - The protests had been peaceful.
 - Crowds oppose the government.
 - Some support Mubarak.

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - The protests became bloody.
 - The protests had been peaceful.
 - Crowds oppose the government.
 - Some support Mubarak.
 - There was a confrontation between two groups.
 - Anti-government crowds are not Mubarak supporters.
 - Etc...

- Semantic representation:
 - What is the appropriate formal language to express propositions in linguistic input?

- Semantic representation:
 - What is the appropriate formal language to express propositions in linguistic input?
 - E.g. predicate calculus
 - $\exists x (dog(x) \land disappear(x))$

- Semantic representation:
 - What is the appropriate formal language to express propositions in linguistic input?
 - E.g. predicate calculus
 - $\exists x.(dog(x) \land disappear(x))$
- Entailment:
 - What are all the valid conclusions that can be drawn from an utterance?

- Semantic representation:
 - What is the appropriate formal language to express propositions in linguistic input?
 - E.g. predicate calculus
 - $\exists x.(dog(x) \land disappear(x))$
- Entailment:
 - What are all the valid conclusions that can be drawn from an utterance?
 - 'Lincoln was assassinated' entails

- Semantic representation:
 - What is the appropriate formal language to express propositions in linguistic input?
 - E.g. predicate calculus
 - $\exists x.(dog(x) \land disappear(x))$
- Entailment:
 - What are all the valid conclusions that can be drawn from an utterance?
 - 'Lincoln was assassinated' entails 'Lincoln is dead.'

- Reference: How do linguistic expressions link to objects/concepts in the real world?
 - 'the dog', 'the evening star', 'the Superbowl'

- Reference: How do linguistic expressions link to objects/concepts in the real world?
 - 'the dog', 'the evening star', 'the Superbowl'
- Compositionality: How can we derive the meaning of a unit from its parts?
 - How do syntactic structure and semantic composition relate?
 - 'rubber duck' vs 'rubber chicken'

- Reference: How do linguistic expressions link to objects/concepts in the real world?
 - 'the dog', 'the evening star', 'the Superbowl'
- Compositionality: How can we derive the meaning of a unit from its parts?
 - How do syntactic structure and semantic composition relate?
 - 'rubber duck' vs 'rubber chicken'
 - 'kick the bucket'

Tasks in Computational Semantics

- Computational semantics aims to extract, interpret, and reason about the meaning of NL utterances, and includes:
 - Defining a meaning representation

Tasks in Computational Semantics

- Computational semantics aims to extract, interpret, and reason about the meaning of NL utterances, and includes:
 - Defining a meaning representation
 - Developing techniques for semantic analysis, to convert NL strings to meaning representations

Tasks in Computational Semantics

- Computational semantics aims to extract, interpret, and reason about the meaning of NL utterances, and includes:
 - Defining a meaning representation
 - Developing techniques for **semantic analysis**, to convert NL strings to meaning representations
 - Developing methods for reasoning about these representations and performing inference from them

NLP Semantics Tasks

- Tasks:
 - Semantic similarity: words, texts
 - Semantic role labeling
 - Semantic analysis
 - "Semantic parsing"
 - Recognizing textual entailment
 - Sentiment Analysis

• Requires:

- Requires:
 - Knowledge of language: words, syntax, relationships b/t structure and meaning, composition procedures

- Requires:
 - Knowledge of language: words, syntax, relationships b/t structure and meaning, composition procedures
 - Knowledge of the world: what are the objects that we refer to, how do they relate, what are their properties?

Requires:

- Knowledge of language: words, syntax, relationships b/t structure and meaning, composition procedures
- Knowledge of the world: what are the objects that we refer to, how do they relate, what are their properties?
- Reasoning: Given a representation and a world, what new conclusions – bits of meaning – can we infer?

Requires:

- Knowledge of language: words, syntax, relationships b/t structure and meaning, composition procedures
- Knowledge of the world: what are the objects that we refer to, how do they relate, what are their properties?
- Reasoning: Given a representation and a world, what new conclusions – bits of meaning – can we infer?
- Effectively Al-complete
 - Need representation, reasoning, world model, etc

Representing Meaning

- All consist of structures from set of symbols
 - Representational vocabulary

- All consist of structures from set of symbols
 - Representational vocabulary
- Symbol structures correspond to:
 - Objects
 - Properties of objects
 - Relations among objects

- All consist of structures from set of symbols
 - Representational vocabulary
- Symbol structures correspond to:
 - Objects
 - Properties of objects
 - Relations among objects
- Can be viewed as:

- All consist of structures from set of symbols
 - Representational vocabulary
- Symbol structures correspond to:
 - Objects
 - Properties of objects
 - Relations among objects
- Can be viewed as:
 - Representation of meaning of linguistic input

- All consist of structures from set of symbols
 - Representational vocabulary
- Symbol structures correspond to:
 - Objects
 - Properties of objects
 - Relations among objects
- Can be viewed as:
 - Representation of meaning of linguistic input
 - Representation of state of world
- Here we focus on literal meaning

- Verifiability
- Unambiguous representations
- Canonical Form
- Inference and Variables
- Expressiveness

- Verifiability
 - Can compare representation of sentence to KB model
- Unambiguous representations
- Canonical Form
- Inference and Variables
- Expressiveness

- Verifiability
 - Can compare representation of sentence to KB model
- Unambiguous representations
 - Semantic representation itself is unambiguous
- Canonical Form
- Inference and Variables
- Expressiveness

- Verifiability
 - Can compare representation of sentence to KB model
- Unambiguous representations
 - Semantic representation itself is unambiguous
- Canonical Form
 - Alternate expressions of same meaning map to same rep
- Inference and Variables
- Expressiveness

- Verifiability
 - Can compare representation of sentence to KB model
- Unambiguous representations
 - Semantic representation itself is unambiguous
- Canonical Form
 - Alternate expressions of same meaning map to same rep
- Inference and Variables
 - Way to draw valid conclusions from semantics and KB
- Expressiveness

- Verifiability
 - Can compare representation of sentence to KB model
- Unambiguous representations
 - Semantic representation itself is unambiguous
- Canonical Form
 - Alternate expressions of same meaning map to same rep
- Inference and Variables
 - Way to draw valid conclusions from semantics and KB
- Expressiveness
 - Represent any natural language utterance

Meaning Structure of Language

- Human languages
 - Display basic predicate-argument structure
 - Employ variables
 - Employ quantifiers
 - Exhibit a (partially) compositional semantics

- Represent concepts and relationships
- Words behave like predicates:

- Represent concepts and relationships
- Words behave like predicates:
 - Verbs, Adj, Adv:
 - Book(John, United); Non-stop(Flight)
- Some words behave like arguments:

- Represent concepts and relationships
- Words behave like predicates:
 - Verbs, Adj, Adv:
 - Book(John, United); Non-stop(Flight)
- Some words behave like arguments:
 - Nouns: Book(John, United); Non-stop(Flight)

- Represent concepts and relationships
- Words behave like predicates:
 - Verbs, Adj, Adv:
 - Book(John, United); Non-stop(Flight)
- Some words behave like arguments:
 - Nouns: Book(John, United); Non-stop(Flight)
- Subcategorization frames indicate:
 - Number, Syntactic category, order of args

- Meaning representation:
 - Provides sound computational basis for verifiability, inference, expressiveness
- Supports determination of propositional truth
- Supports compositionality of meaning
- Supports inference
- Supports generalization through variables

- FOL terms:
 - Constants: specific objects in world;
 - A, B, John
 - Refer to exactly one object; objects referred to by many

- FOL terms:
 - Constants: specific objects in world;
 - A, B, John
 - Refer to exactly one object; objects referred to by many
 - Functions: concepts refer to objects, e.g. SFO's loc
 - LocationOf(SFO)
 - Refer to objects, avoid using constants

- FOL terms:
 - Constants: specific objects in world;
 - A, B, John
 - Refer to exactly one object; objects referred to by many
 - Functions: concepts refer to objects, e.g. SFO's loc
 - LocationOf(SFO)
 - Refer to objects, avoid using constants
 - Variables:
 - x, e

FOL Representation

• Predicates:

- Relations among objects
 - United serves Chicago. →
 - Serves(United, Chicago)
 - United is an airline. →
 - Airline(United)

FOL Representation

• Predicates:

- Relations among objects
 - United serves Chicago. →
 - Serves(United, Chicago)
 - United is an airline. →
 - Airline(United)

Logical connectives:

- Allow compositionality of meaning
 - Maharani serves vegetarian food and is cheap.

FOL Representation

• Predicates:

- Relations among objects
 - United serves Chicago. →
 - Serves(United, Chicago)
 - United is an airline. →
 - Airline(United)

Logical connectives:

- Allow compositionality of meaning
 - Frontier serves Seattle and is cheap.
 - Serves(Frontier, Seattle) \(\Lambda \) Cheap(Frontier)

Variables refer to:

- Variables refer to:
 - Anonymous objects

- Variables refer to:
 - Anonymous objects
 - All objects in some collection
- Quantifiers:

- Variables refer to:
 - Anonymous objects
 - All objects in some collection
- Quantifiers:
 - **¬**: existential quantifier: "there exists"
 - Indefinite NP, one such object for truth
 - A non-stop flight that serves Pittsburgh

 $\exists x Flight(x) \land Serves(x, Pittsburgh) \land Non - stop(x)$

- Variables refer to:
 - Anonymous objects
 - All objects in some collection
- Quantifiers:
 - **∃**: existential quantifier: "there exists"
 - Indefinite NP, one such object for truth
 - A non-stop flight that serves Pittsburgh $\exists x Flight(x) \land Serves(x, Pittsburgh) \land Non stop(x)$
 - ∀: universal quantifier: "for all"
 - All flights include beverages.

 $\forall x Flight(x) \Rightarrow Includes(x, beverages)$

FOL Syntax Summary

```
Formula → AtomicFormula
                          Formula Connective Formula
                          Quantifier Variable, ... Formula
                          ¬ Formula
                          (Formula)
AtomicFormula \rightarrow Predicate(Term,...)
             Term \rightarrow Function(Term,...)
                          Constant
                          Variable
     Connective \rightarrow \land |\lor| \Rightarrow
      Quantifier \rightarrow \forall \mid \exists
        Constant \rightarrow A \mid VegetarianFood \mid Maharani \cdots
         Variable \rightarrow x \mid y \mid \cdots
       Predicate \rightarrow Serves \mid Near \mid \cdots
        Function \rightarrow LocationOf \mid CuisineOf \mid \cdots
```

Compositionality

- **Compositionality**: The meaning of a complex expression is a function of the meaning of its parts and the rules for their combination.
 - Formal languages are compositional.
 - Natural language meaning is largely, though not fully, compositional, but much more complex.
 - How can we derive things like loves(John, Mary) from John, loves(x,y), and Mary?

Lambda Expressions

- Lambda (λ) notation: (Church, 1940)
 - Just like lambda in Python, Scheme, etc
 - Allows abstraction over FOL formulas
 - Supports compositionality

Lambda Expressions

- Lambda (λ) notation: (Church, 1940)
 - Just like lambda in Python, Scheme, etc
 - Allows abstraction over FOL formulas
 - Supports compositionality
 - Form: λ + variable + FOL expression
 - E.g. $\lambda x.P(x)$ "Function taking x to P(x)"

Lambda Expressions

- Lambda (λ) notation: (Church, 1940)
 - Just like lambda in Python, Scheme, etc
 - Allows abstraction over FOL formulas
 - Supports compositionality
 - Form: λ + variable + FOL expression
 - E.g. $\lambda x.P(x)$ "Function taking x to P(x)"

• $\lambda \times P(x) (A) \rightarrow P(A)$

λ-Reduction

- λ -reduction: Apply λ -expression to logical term
 - Binds formal parameter to term

$$\lambda x.P(x)$$

λ-Reduction

- λ -reduction: Apply λ -expression to logical term
 - Binds formal parameter to term

$$\lambda x.P(x)$$

$$\lambda x.P(x)(A)$$

λ-Reduction

- λ -reduction: Apply λ -expression to logical term
 - Binds formal parameter to term

$$\lambda x.P(x)$$
 $\lambda x.P(x)(A)$
 $P(A)$

Equivalent to function application

Nested λ -Reduction

Lambda expression as body of another

 $\lambda x.\lambda y.Near(x,y)$

Lambda expression as body of another

 $\lambda x.\lambda y.Near(x,y)$

 $\lambda x.\lambda y.Near(x,y)(Midway)$

Lambda expression as body of another

 $\lambda x.\lambda y.Near(x,y)$

 $\lambda x.\lambda y.Near(x,y)(Midway)$

 $\lambda y.Near(Midway, y)$

Lambda expression as body of another

 $\lambda x.\lambda y.Near(x,y)$

 $\lambda x.\lambda y.Near(x,y)(Midway)$

 $\lambda y.Near(Midway, y)$

 $\lambda y.Near(Midway, y)(Chicago)$

Lambda expression as body of another

 $\lambda x.\lambda y.Near(x,y)$

 $\lambda x.\lambda y.Near(x,y)(Midway)$

 $\lambda y.Near(Midway, y)$

 $\lambda y.Near(Midway, y)(Chicago)$

Near(Midway, Chicago)

Lambda Expressions

- Currying;
 - Converting multi-argument predicates to sequence of single argument predicates
 - Why?

Lambda Expressions

- Currying;
 - Converting multi-argument predicates to sequence of single argument predicates
 - Why?
 - Incrementally accumulates multiple arguments spread over different parts of parse tree

Semantics of Meaning Rep.

- Model-theoretic approach:
 - FOL terms (objects): denote elements in a domain
 - Atomic formulas are:
 - If properties, sets of domain elements
 - If relations, sets of tuples of elements
- Formulas based on logical operators:

P	ϱ	$\neg P$	$ extbf{\emph{P}} \wedge extbf{\emph{Q}}$	$ extbf{ extit{P}}ee extbf{ extit{Q}}$	$P \Rightarrow Q$
False	False	True	False	False	True
False	True	True	False	True	True
True	False	False	False	True	False
True	True	False	True	True	True

Compositionality provided by lambda expressions

Inference

- Standard Al-type logical inference procedures
 - Modus Ponens
 - Forward-chaining, Backward Chaining
 - Abduction
 - Resolution
 - Etc,...
- We'll assume we have a prover

Representing Events

- Initially, single predicate with some arguments
 - Serves(United, Houston)
 - Assume # ags = # elements in subcategorization frame

Representing Events

- Initially, single predicate with some arguments
 - Serves(United, Houston)
 - Assume # ags = # elements in subcategorization frame
- Example:
 - The flight arrived.
 - The flight arrived in Seattle
 - The flight arrived in Seattle on Saturday.
 - The flight arrived on Saturday.
 - The flight arrived in Seattle from SFO.
 - The flight arrived in Seattle from SFO on Saturday.

Events

• Issues?

Events

- Issues?
 - Arity how can we deal with different #s of arguments?

- Neo-Davidsonian representation:
 - Distill event to single argument for event itself
 - Everything else is additional predication

 $\exists eArriving(e) \land Arrived(e, Flight) \land Location(e, SEA) \land ArrivalDay(e, Saturday)$

Pros:

- Neo-Davidsonian representation:
 - Distill event to single argument for event itself
 - Everything else is additional predication

 $\exists eArriving(e) \land Arrived(e, Flight) \land Location(e, SEA) \land ArrivalDay(e, Saturday)$

- Pros:
 - No fixed argument structure
 - Dynamically add predicates as necessary

- Neo-Davidsonian representation:
 - Distill event to single argument for event itself
 - Everything else is additional predication

 $\exists eArriving(e) \land Arrived(e, Flight) \land Location(e, SEA) \land ArrivalDay(e, Saturday)$

- Pros:
 - No fixed argument structure
 - Dynamically add predicates as necessary
 - No extra roles

- Neo-Davidsonian representation:
 - Distill event to single argument for event itself
 - Everything else is additional predication

 $\exists eArriving(e) \land Arrived(e, Flight) \land Location(e, SEA) \land ArrivalDay(e, Saturday)$

- Pros:
 - No fixed argument structure
 - Dynamically add predicates as necessary
 - No extra roles
 - Logical connections can be derived

Meaning Representation for Computational Semantics

- Requirements:
 - Verifiability, Unambiguous representation, Canonical Form, Inference, Variables, Expressiveness
- Solution:
 - First-Order Logic
 - Structure
 - Semantics
 - Event Representation
- Next: Semantic Analysis
 - Deriving a meaning representation for an input

Summary

- First-order logic can be used as a meaning representation language for natural language
- Principle of compositionality: the meaning of a complex expression is a function of the meaning of its parts
- λ -expressions can be used to compute meaning representations from syntactic trees based on the principle of compositionality
- In the next section, we will look at a syntax-driven approach to semantic analysis in more detail