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Roadmap

® Motivation: Dialog Systems
® Key challenges
® Meaning representation

® Representational requirements

® First-order logic
® Syntax & Semantics

® Representing compositional meaning




Dialogue Systems
e User: What do | have on Thursday?

® Parse:
e (S
o (Q-WH-Obj
o (Whwd What)
° (Aux do )
o (NP (Pron |))
o (VP/NP (V have)
o (NP/NP *t*)
° (PP (Prep on)

(NP (N Thursday))))))




Dialogue Systems

® Parser:
® Yes, it's grammatical!
® Here's the structure!

e System: Great, but what am | supposed to DO?!

® Need to associate meaning with structure




Dialogue Systems

o (S

o (Q-WH-ODbj Action: check; cal: USER; Date:Thursday
J (Whwd What)

° (Aux do )

o (NP (Pron 1)) Cal: USER

o (VP/NP (V have)

o (NP/NP *t*)

o (PP (Prep on)

o

(NP (N Thursday)))))) Date: Thursday




Natural Language

e Syntax: Determine the structure of natural
language input

¢ Semantics: Determine the meaning of natural
language input




Tasks for Semantics

e Semantic interpretation required for many tasks
® Answering questions

® Following instructions in a software manual
® Following a recipe

® Requires more than phonology, morphology, syntax

® Must link linguistic elements to world knowledge




Semantics is Complex

® Sentences have many entailments, presuppositions

® |nstead, the protests turned bloody, as anti-government
crowds were confronted by what appeared to be a
coordinated group of Mubarak supporters.
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Semantics is Complex

® Sentences have many entailments, presuppositions

® |nstead, the protests turned bloody, as anti-government
crowds were confronted by what appeared to be a
coordinated group of Mubarak supporters.

The protests became bloody.

The protests had been peaceful.

Crowds oppose the government.

Some support Mubarak.

There was a confrontation between two groups.
Anti-government crowds are not Mubarak supporters.
Bilc..
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Challenges in Semantics

® Semantic representation:

e What is the appropriate formal language to express
propositions in linguistic input?
® E.g. predicate calculus
e 3Jx.(dog(x) A disappear(x))

e Entailment;:

® \What are all the valid conclusions that can be drawn
from an utterance?

® ‘Lincoln was assassinated’ entails ‘Lincoln is dead.’
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Challenges in Semantics

® Reference: How do linguistic expressions link to
objects/concepts in the real world?

e ‘the dog’, ‘the evening star’, ‘the Superbowl’

® Compositionality: How can we derive the meaning
of a unit from its parts?
® How do syntactic structure and semantic composition
relate?
® ‘rubber duck’ vs ‘rubber chicken’

® ‘kick the bucket’




Tasks in Computational
Semantics

® Computational semantics aims to extract, interpret,
and reason about the meaning of NL utterances,

and includes:

® Defining a meaning representation
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Tasks in Computational
Semantics

® Computational semantics aims to extract, interpret,
and reason about the meaning of NL utterances,
and includes:

® Defining a meaning representation

® Developing techniques for semantic analysis, to
convert NL strings to meaning representations

® Developing methods for reasoning about these
representations and performing inference from them




NLP Semantics Tasks

® Tasks:
® Semantic similarity: words, texts

® Semantic role labeling

® Semantic analysis

® “Semantic parsing”

® Recognizing textual entailment

® Sentiment Analysis




Complexity of
Computational Semantics

® Requires:




Complexity of
Computational Semantics

® Requires:
® Knowledge of language: words, syntax, relationships
b/t structure and meaning, composition procedures




Complexity of
Computational Semantics

® Requires:

® Knowledge of language: words, syntax, relationships
b/t structure and meaning, composition procedures

o Knowledge of the world: what are the objects that we
refer to, how do they relate, what are their properties?




Complexity of
Computational Semantics

® Requires:
® Knowledge of language: words, syntax, relationships
b/t structure and meaning, composition procedures

o Knowledge of the world: what are the objects that we
refer to, how do they relate, what are their properties?

® Reasoning: Given a representation and a world, what
new conclusions — bits of meaning — can we infer?




Complexity of
Computational Semantics

® Requires:
o Knowledge of language: words, syntax, relationships b/t
structure and meaning, composition procedures

e Knowledge of the world: what are the objects that we refer
to, how do they relate, what are their properties?

® Reasoning: Given a representation and a world, what new
conclusions — bits of meaning — can we infer?

e Effectively Al-complete
® Need representation, reasoning, world model, etc




Representing Meaning

de,y Having(e) A Haver (e,Speaker) N HadT hing(e,y) A Car(y)

First-order Logic fHaVing\v
TSemantiC Network

Hafer Had-Thin

Speaker Car
Conceptual Car Having Frame-Based
Dependency I POSS-BY Haver: Speaker

Speaker HadThing: Car




Meaning Representations

® All consist of structures from set of symbols
® Representational vocabulary
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Meaning Representations

All consist of structures from set of symbols
® Representational vocabulary

Symbol structures correspond to:
® Objects

® Properties of objects

® Relations among objects

Can be viewed as:
® Representation of meaning of linguistic input
® Representation of state of world

Here we focus on literal meaning




Representational

Requirements
® Verifiability

* Unambiguous representations
® Canonical Form
® |nference and Variables

® Expressiveness
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Representational
Requirements

Verifiability
® Can compare representation of sentence to KB model

Unambiguous representations
® Semantic representation itself is unambiguous

Canonical Form
® Alternate expressions of same meaning map to same rep

Inference and Variables
e Way to draw valid conclusions from semantics and KB

Expressiveness
® Represent any natural language utterance




Meaning Structure of
Language

® Human languages
® Display basic predicate-argument structure

® Employ variables

® Employ quantifiers

e Exhibit a (partially) compositional semantics




Predicate-Argument
Structure

® Represent concepts and relationships

®* Words behave like predicates:
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Predicate-Argument
Structure

Represent concepts and relationships

Words behave like predicates:
e \erbs, Adj, Adv:
® Book(John,United); Non-stop(Flight)

Some words behave like arguments:
e Nouns: Book(John,United); Non-stop(Flight)

Subcategorization frames indicate:
e Number, Syntactic category, order of args




First-Order Logic

Meaning representation:

® Provides sound computational basis for verifiability,
Inference, expressiveness

Supports determination of propositional truth
Supports compositionality of meaning

Supports inference

Supports generalization through variables




First-Order Logic

e FOL terms:
e Constants: specific objects in world;
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® Refer to exactly one object; objects referred to by many
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First-Order Logic

e FOL terms:

® Constants: specific objects in world;
e A B John
® Refer to exactly one object; objects referred to by many

® Functions: concepts refer to objects, e.g. SFO’s loc
® [ocationOf(SFO)
® Refer to objects, avoid using constants

e Variables:
® X €




FOL Representation

* Predicates:
® Relations among objects
® United serves Chicago. =
e Serves(United, Chicago)
® Unitedis an airline. =
e Airline(United)
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FOL Representation

* Predicates:
® Relations among objects
® United serves Chicago. =
e Serves(United, Chicago)
® Unitedis an airline. =
e Airline(United)

® Logical connectives:

® Allow compositionality of meaning
® Frontier serves Seattle and is cheap.
e Serves(Frontier,Seattle) A Cheap(Frontier)

s —
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Variables & Quantifiers

® Variables refer to:
® Anonymous objects
® All objects in some collection

® Quantifiers:

e : existential quantifier: “there exists”
® |ndefinite NP, one such object for truth
® A non-stop flight that serves Pittsburgh

IxFlight(x) n Serves(x, Pittsburgh) A Non - stop(x)
® \/ : universal quantifier: “for all”

® All flights include beverages.
VxFlight(x) = Includes(x,beverages)




FOL Syntax Summary

Formula — AtomicFormula
Formula Connective Formuila
Quantifier Variable, . .. Formula

— Formula
(Formula)
AtomicFormula — Predicate(Term, . ..)
Term — Function(Term,...)
| Constant
| Variable
Connective — N| V| =
Quantifier — V| 3
Constant — A | VegetarianFood | Maharani- - -
Variable — x| y| ---
Predicate — Serves | Near | ---
Function — LocationOf | CuisineOf| ---




Compositionality

® Compositionality: The meaning of a complex
expression is a function of the meaning of its parts
and the rules for their combination.

® Formal languages are compositional.

e Natural language meaning is largely, though not fully,
compositional, but much more complex.

® How can we derive things like loves(John, Mary) from
John, loves(x,y), and Mary?
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Lambda Expressions

e Lambda (A1) notation: (Church, 1940)
e Just like lambda in Python, Scheme, etc

® Allows abstraction over FOL formulas
® Supports compositionality

® Form: A + variable + FOL expression
e E.g. Ax.P(x) “Function taking x to P(x)”

o Ax.P(X)(A) > P(A)
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® Binds formal parameter to term

Ax.P(x)
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A-Reduction

e )\ -reduction: Apply A -expression to logical term
® Binds formal parameter to term

Ax.P(x)
Ax.P(x)(A)
P(A)

® Fquivalent to function application
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® [ambda expression as body of another

Ax.Ay.Near(x,y)
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Nested A -Reduction

® Lambda expression as body of another

Ax.Ay.Near(x,y)
Ax.Ay.Near(x,y)(Midway)
Ay.Near(Midway,y)
Ay.Near(Midway,y)(Chicago)
Near(Midway,Chicago)

- —



Lambda Expressions

e Currying;
e Converting multi-argument predicates to sequence of
single argument predicates

e Why?




Lambda Expressions

® Currying;
® Converting multi-argument predicates to sequence of
single argument predicates

o Why?

® |ncrementally accumulates multiple arguments spread
over different parts of parse tree




Semantics of Meaning Rep.

® Model-theoretic approach:
e FOL terms (objects): denote elements in a domain
® Atomic formulas are:
® |f properties, sets of domain elements
® |f relations, sets of tuples of elements

® Formulas based on logical operators:

P 0 atll 2 PAQ PV O P = 0
False False True False False True
False True True False True True
True False False False True False
True True False True True True

ompositionality provided by lambda expressions




Inference

e Standard Al-type logical inference procedures
® Modus Ponens
® Forward-chaining, Backward Chaining
e Abduction
® Resolution
e Fic,..

o We’'ll assume we have a prover
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Representing Events

* [nitially, single predicate with some arguments

Serves(United,Houston)

® Assume # ags = # elements in subcategorization frame

e Example:

The flight arrived.

The flight arrived in Seattle

The flight arrived in Seattle on Saturday.

The flight arrived on Saturday.

The flight arrived in Seattle from SFO.

The flight arrived in Seattle from SFO on Saturday.
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Events

® |ssues?
® Arity — how can we deal with different #s of arguments?




Neo-Davidsonian Events

® Neo-Davidsonian representation:
® Distill event to single argument for event itself
® EFverything else is additional predication
deArriving(e) A Arrived(e, Flight) n Location(e,SEA) A ArrivalDay(e,Saturday)

® Pros:
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Neo-Davidsonian Events

® Neo-Davidsonian representation:
® Distill event to single argument for event itself
® EFverything else is additional predication
deArriving(e) A Arrived(e, Flight) n Location(e,SEA) A ArrivalDay(e,Saturday)

® Pros:

® No fixed argument structure
® Dynamically add predicates as necessary

® No extra roles

® | ogical connections can be derived




Meaning Representation for
Computational Semantics

® Requirements:

e \erifiability, Unambiguous representation, Canonical
Form, Inference, Variables, Expressiveness

® Solution:
® First-Order Logic
® Structure
® Semantics
® Event Representation

® Next: Semantic Analysis
® Deriving a meaning representation for an input




Summary

First-order logic can be used as a meaning
representation language for natural language

Principle of compositionality: the meaning of a
complex expression is a function of the meaning of
Its parts

A -expressions can be used to compute meaning
representations from syntactic trees based on the
principle of compositionality

In the next section, we will look at a syntax-driven
approach to semantic analysis in more detalil




