K nearest neighbor

LING 572
Fei Xia, Bill McNeill
Week 2: 1/13/2009
Outline

• Demo

• kNN

• Reading assignment #2
Demo

- ML algorithms: Naïve Bayes, Decision stump, boosting, bagging, SVM, etc.

- Task: A binary classification problem with only two features.

- http://www.cs.technion.ac.il/~rani/LocBoost/
kNN
Instance-based (IB) learning

• No training: store all training instances. ➞ “Lazy learning”

• Examples:
 – kNN
 – Locally weighted regression
 – Radial basis functions
 – Case-based reasoning
 – ...

• The most well-known IB method: kNN
kNN
kNN

• For a new instance \(d\),
 – find \(k\) training instances that are closest to \(d\).
 – perform majority voting or weighted voting.

• Properties:
 – A “lazy” classifier. No training.
 – Feature selection and distance measure are crucial.
The algorithm

- Determine parameter K
- Calculate the distance between query-instance and all the training instances
- Sort the distances and determine K nearest neighbors
- Gather the labels of the K nearest neighbors
- Use simple majority voting or weighted voting.
Picking K

• Use the validation data: pick the one that minimizes cross validation error.
 – Training data: true training data and validation data
 – Dev data
 – Test data

• N-fold cross validation:
Normalizing attribute values

- Distance could be dominated by some attributes with large numbers:
 - Ex: features: age, income
 - Original data: $x_1 = (35, 76\text{K})$, $x_2 = (36, 80\text{K})$, $x_3 = (70, 79\text{K})$
 - Assume: age $\in [0, 100]$, income $\in [0, 200\text{K}]$
 - After normalization: $x_1 = (0.35, 0.38)$, $x_2 = (0.36, 0.40)$, $x_3 = (0.70, 0.395)$.
The Choice of Features

• Imagine there are 100 features, and only 2 of them are relevant to the target label.

• kNN is easily misled in high-dimensional space.

→ Feature weighting or feature selection (It will be covered in Week #4)
Feature weighting

• Stretch j-th axis by weight \(w_j \),

• Use cross-validation to automatically choose weights \(w_1, \ldots, w_n \)

• Setting \(w_j \) to zero eliminates this dimension altogether.
Some similarity measures

- **Euclidean distance:**
 \[dist(d_i, d_j) = \sqrt{\sum_k (a_{i,k} - a_{j,k})^2} \]

- **Weighted Euclidean distance:**
 \[dist(d_i, d_j) = \sqrt{\sum_k w_k (a_{i,k} - a_{j,k})^2} \]

- **Cosine**
 \[\cos(d_i, d_j) = \frac{\sum_k a_{i,k} a_{j,k}}{\sqrt{\sum_k a_{i,k}^2} \sqrt{\sum_k a_{j,k}^2}} \]
Voting by k-nearest neighbors

• Suppose we have found the k-nearest neighbors.

• Let $f_i(x)$ be the class label for the i-th neighbor of x.

\[\delta(c, f_i(x)) \] is the identity function; that is, it is 1 if $f_i(x) = c$, and is 0 otherwise.

Let $g(c) = \sum \delta(c, f_i(x))$; that is, $g(c)$ is the number of neighbors with label c.
Voting

• Majority voting:
 \[c^* = \arg \max_c g(c) \]

• Weighted voting: weighting is on each neighbor
 \[c^* = \arg \max_c \sum_i w_i \delta(c, f_i(x)) \]

• Weighted voting allows us to use more training examples:

 e.g., \(w_i = 1/\text{dist}(x, x_i) \)

 \(\Rightarrow \) We can use all the training examples.
Summary of kNN algorithm

• Decide k, feature weights, and similarity measure

• Given a test instance x
 – Calculate the distances between x and all the training data
 – Choose the k nearest neighbors
 – Let the neighbors vote
• **Strengths:**
 – Simplicity (conceptual)
 – Efficiency at training: no training
 – Handling multi-class
 – Stability and robustness: averaging k neighbors
 – Predication accuracy: when the training data is large

• **Weakness:**
 – Efficiency at testing time: need to calc all distances
 – Theoretical validity
 – It is not clear which types of distance measure and features to use.

=> Extension: e.g., Rocchio algorithm
The term “weight” in ML

Some \textbf{Xs} are more important than others given everything else in the system

- Weights of \textit{features}

- Weights of \textit{instances}

- Weights of \textit{classifiers}
The term “binary” in ML

• Classification problem
 – Binary: the number of classes is 2
 – Multi-class: the number is classes is > 2

• Features
 – Binary: the number of possible feature values is 2.
 – Real-valued: the feature values are real numbers

• File format:
 – Binary: human un-readable
 – Text: human readable