MaxEnt: Training, Smoothing, Tagging

Advanced Statistical Methods in NLP
Ling572
February 7, 2012
Roadmap

- Maxent:
 - Training

- Smoothing

- Case study:
 - POS Tagging (redux)
 - Beam search
Training
Training

- Learn λ's from training data
Training

- Learn λ's from training data
- Challenge: Usually can’t solve analytically
 - Employ numerical methods
Training

- Learn λ's from training data
- Challenge: Usually can’t solve analytically
 - Employ numerical methods
- Main different techniques:
 - Generalized Iterative Scaling (GIS, Darroch & Ratcliff, ‘72)
 - Improved Iterative Scaling (IIS, Della Pietra et al, ‘95)
 - L-BFGS,......
Generalized Iterative Scaling

- **GIS Setup:**
 - GIS required constraint:
 - \[\forall (x, y) \in (X, Y) \sum_{j=1}^{k} f_j(x, y) = C, \] where C is a constant
Generalized Iterative Scaling

- GIS Setup:
 - GIS required constraint:
 - \(\forall (x, y) \in (X, Y) \sum_{j=1}^{k} f_j(x, y) = C \), where \(C \) is a constant
 - If not, then set
Generalized Iterative Scaling

- GIS Setup:
 - GIS required constraint:

 \[\forall (x, y) \in (X, Y) \sum_{j=1}^{k} f_j(x, y) = C \], where \(C \) is a constant

- If not, then set

 \[C = \max_{(x_i, y_i) \in S} \sum_{j=1}^{k} f_j(x_i, y_i) \]
Generalized Iterative Scaling

- GIS Setup:
 - GIS required constraint:
 \[\forall (x, y) \in (X, Y) \sum_{j=1}^{k} f_j(x, y) = C, \text{ where } C \text{ is a constant} \]
 - If not, then set
 \[C = \max_{(x_i, y_i) \in S} \sum_{j=1}^{k} f_j(x_i, y_i) \]
 - and add a correction feature function \(f_{k+1} \):
 \[\forall (x, y) \in (X, Y) f_{k+1}(x, y) = C - \sum_{j=1}^{k} f_j(x, y) \]
Generalized Iterative Scaling

- GIS Setup:
 - GIS required constraint:

\[\forall (x, y) \in (X, Y) \sum_{j=1}^{k} f_j(x, y) = C, \text{ where } C \text{ is a constant} \]

- If not, then set

\[C = \max_{(x_i, y_i) \in S} \sum_{j=1}^{k} f_j(x_i, y_i) \]

- and add a correction feature function \(f_{k+1} \):

\[\forall (x, y) \in (X, Y) f_{k+1}(x, y) = C - \sum_{j=1}^{k} f_j(x, y) \]

- GIS also requires at least one active feature for any event
 - Default feature functions solve this problem
GIS Iteration

- Compute the empirical expectation
GIS Iteration

• Compute the empirical expectation
• Initialization: $\lambda_j^{(0)}$; set to 0 or some value
GIS Iteration

- Compute the empirical expectation
- Initialization: $\lambda_j^{(0)}$; set to 0 or some value
- Iterate until convergence for each j:
GIS Iteration

- Compute the empirical expectation
- Initialization: $\lambda_j^{(0)}$; set to 0 or some value
- Iterate until convergence for each j:
 - Compute $p(y|x)$ under the current model
GIS Iteration

- Compute the empirical expectation
- Initialization: $\lambda_j^{(0)}$; set to 0 or some value
- Iterate until convergence for each j:
 - Compute $p(y|x)$ under the current model
 - Compute model expectation under current model
GIS Iteration

- Compute the empirical expectation
- Initialization: $\lambda_j^{(0)}$; set to 0 or some value
- Iterate until convergence for each j:
 - Compute $p(y|x)$ under the current model
 - Compute model expectation under current model
 - Update model parameters by weighted ratio of empirical and model expectations
GIS Iteration

- Compute
 \[d_j = E_p(f_j) = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i) \]
GIS Iteration

- Compute $d_j = E_p(f_j) = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i)$
- Initialization: $\lambda_j^{(0)}$; set to 0 or some value
GIS Iteration

- Compute
 \[d_j = E_p(f_j) = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i) \]

- Initialization: \(\lambda_j^{(0)} \); set to 0 or some value

- Iterate until convergence:
 - Compute
GIS Iteration

- Compute \(d_j = E_p(f_j) = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i) \)
- Initialization: \(\lambda_j^{(0)} \); set to 0 or some value
- Iterate until convergence:
 - Compute \(p^{(n)}(y|x) = \frac{\sum_j \lambda_j f_j(x, y)}{Z} \)
GIS Iteration

- Compute $d_j = E_p(f_j) = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i)$
- Initialization: $\lambda_j^{(0)}$; set to 0 or some value
- Iterate until convergence: $e \sum_j \lambda_j f_j(x, y)$
 - Compute $p^{(n)}(y | x) = \frac{1}{Z}$
 - Compute $E_{p^{(n)}}(f_j) = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p^{(n)}(y | x_i) f_j(x_i, y)$
GIS Iteration

- Compute \(d_j = E_p(f_j) = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i) \)

- Initialization: \(\lambda_j^{(0)} \); set to 0 or some value

- Iterate until convergence:
 - Compute \(p^{(n)}(y|\mathbf{x}) = e^{\sum_j \lambda_j f_j(x,y)} / Z \)
 - Compute \(E_{p^{(n)}}(f_j) = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p^{(n)}(y|x_i) f_j(x_i, y) \)
 - Update \(\lambda_j^{(n+1)} = \lambda_j^{(n)} + \frac{1}{C} \left(\log \frac{d_j}{E_{p^{(n)}}(f_j)} \right) \)
Convergence

- Methods have convergence guarantees
Convergence

- Methods have convergence guarantees
- However, full convergence may take very long time
Convergence

- Methods have convergence guarantees
- However, full convergence may take very long time
 - Frequently use threshold

\[L(p) = \sum_{(x,y) \in S} \tilde{p}(x, y) \log p(y \mid x) \]

\[L(p^{(n)}) = \sum_{(x,y) \in S} \tilde{p}(x, y) \log p^{(n)}(y \mid x) \]
Convergence

- Methods have convergence guarantees
- However, full convergence may take very long time
 - Frequently use threshold

\[
L(p) = \sum_{(x,y) \in S} \tilde{p}(x,y) \log p(y \mid x)
\]

\[
L(p^{(n)}) = \sum_{(x,y) \in S} \tilde{p}(x,y) \log p^{(n)}(y \mid x)
\]

\[
L(p^{(n+1)}) - L(p^{(n)}) < \text{threshold}
\]

\[
\frac{L(p^{(n+1)}) - L(p^{(n)})}{L(p^{(n)})} < \text{threshold}
\]
Calculating LL(p)

- LL = 0

- For each sample x in the training data
 - Let y be the true label of x
 - prob = p(y|x)
 - LL += 1/N * prob
Running Time

- For each iteration the running time is:
Running Time

- For each iteration the running time is $O(NPA)$, where:
 - N: number of training instances
 - P: number of classes
 - A: Average number of active features for instance (x,y)
L-BFGS

- Limited-memory version of
 - Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
L-BFGS

- Limited-memory version of
 - Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

- Quasi-Newton method for unconstrained optimization
L-BFGS

- Limited-memory version of
 - Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
- Quasi-Newton method for unconstrained optimization
- Good for optimization problems with many variables
L-BFGS

- Limited-memory version of Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
- Quasi-Newton method for unconstrained optimization
- Good for optimization problems with many variables
- “Algorithm of choice” for MaxEnt and related models
L-BFGS

- References:
L-BFGS

- References:

- Implementations:
 - Java, Matlab, Python via scipy, R, etc
 - See Wikipedia page
Smoothing

Based on Klein & Manning, 2003; F. Xia
Smoothing

- Problems of scale:
Smoothing

- Problems of scale:
 - Large numbers of features
 - Some NLP problems in MaxEnt ➔ 1M features
 - Storage can be a problem
Smoothing

- Problems of scale:
 - Large numbers of features
 - Some NLP problems in MaxEnt ➔ 1M features
 - Storage can be a problem
 - Sparseness problems
 - Ease of overfitting
Smoothing

- Problems of scale:
 - Large numbers of features
 - Some NLP problems in MaxEnt → 1M features
 - Storage can be a problem

- Sparseness problems
 - Ease of overfitting

- Optimization problems
 - Features can be near infinite, take long time to converge
Smoothing

- Consider the coin flipping problem
- Three empirical distributions
- Models

From K&M ‘03
Need for Smoothing

- Two problems
Need for Smoothing

- Two problems
 - Optimization:
 - Optimal value of λ? ∞
 - Slow to optimize

From K&M ‘03
Need for Smoothing

- Two problems
 - Optimization:
 - Optimal value of λ?
 - Slow to optimize
 - No smoothing
 - Learned distribution just as spiky (K&M’03)

From K&M ‘03
Possible Solutions
Possible Solutions

- Early stopping
- Feature selection
- Regularization
Early Stopping

- Prior use of early stopping
Early Stopping

- Prior use of early stopping
 - Decision tree heuristics
Early Stopping

- Prior use of early stopping
 - Decision tree heuristics

- Similarly here
 - Stop training after a few iterations
 - λ will have increased
 - Guarantees bounded, finite training time
Feature Selection

- Approaches:
Feature Selection

- Approaches:
 - Heuristic: Drop features based on fixed thresholds
 - i.e. number of occurrences
Feature Selection

- Approaches:
 - Heuristic: Drop features based on fixed thresholds
 - i.e. number of occurrences
 - Wrapper methods:
 - Add feature selection to training loop
Feature Selection

- Approaches:
 - Heuristic: Drop features based on fixed thresholds
 - i.e. number of occurrences
 - Wrapper methods:
 - Add feature selection to training loop

- Heuristic approaches:
 - Simple, reduce features, but could harm performance
Regularization

- In statistics and machine learning, regularization is any method of preventing overfitting of data by a model.
Regularization

- In statistics and machine learning, regularization is any method of preventing overfitting of data by a model.

- Typical examples of regularization in statistical machine learning include ridge regression, lasso, and L2-norm minimization support vector machines.

From K&M ’03, F. Xia
Regularization

- In statistics and machine learning, regularization is any method of preventing overfitting of data by a model.

- Typical examples of regularization in statistical machine learning include ridge regression, lasso, and L2-norm in support vector machines.

- In this case, we change the objective function:
 \[\log P(Y, \lambda | X) = \log P(\lambda) + \log P(Y|X, \lambda) \]
Prior

- Possible prior distributions: uniform, exponential
Prior

- Possible prior distributions: uniform, exponential
- Gaussian prior:

\[P(\lambda_i) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(\lambda_i - \mu_i)^2}{2\sigma^2}\right) \]
Prior

- Possible prior distributions: uniform, exponential
- Gaussian prior:

\[
P(\lambda_i) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(\lambda_i - \mu_i)^2}{2\sigma^2}\right)
\]

- \(\log P(Y, \lambda \mid X) = \log P(\lambda) + \log P(Y \mid X, \lambda)\)

\[
= \sum_{i=1}^{k} \log P(\lambda_i) + \log P(Y \mid X, \lambda)
\]

\[
= -k \log \sqrt{2\pi\sigma} - \sum_{i=1}^{k} \frac{(\lambda_i - \mu)^2}{2\sigma^2} + \log P(Y \mid X, \lambda)
\]
• Maximize $P(Y|X, \lambda)$

$$E_p(f_j) = E_{\tilde{p}}(f_j)$$

• Maximize $P(Y, \lambda |X)$

$$E_p(f_j) = E_{\tilde{p}}(f_j) - \frac{\lambda_j - \mu}{\sigma^2}$$

• In practice, $\mu = 0; 2\sigma^2 = 1$
L1 and L2 Regularization

\[L_1 = \sum_i \log P(y_i, \lambda | x_i) - \frac{\|\lambda\|}{\sigma} \]

\[L_2 = \sum_i \log P(y_i, \lambda | x_i) - \frac{\|\lambda\|^2}{\sigma} \]
Smoothing: POS Example

- From (Toutanova et al., 2003):

<table>
<thead>
<tr>
<th></th>
<th>Overall Accuracy</th>
<th>Unknown Word Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Smoothing</td>
<td>96.54</td>
<td>85.20</td>
</tr>
<tr>
<td>With Smoothing</td>
<td>97.10</td>
<td>88.20</td>
</tr>
</tbody>
</table>

- Smoothing helps:
 - Softens distributions.
 - Pushes weight onto more explanatory features.
 - Allows many features to be dumped safely into the mix.
 - Speeds up convergence (if both are allowed to converge)!
Advantages of Smoothing

- Smooths distributions
Advantages of Smoothing

- Smooths distributions
- Moves weight onto more informative features
Advantages of Smoothing

- Smooths distributions
- Moves weight onto more informative features
- Enables effective use of larger numbers of features
Advantages of Smoothing

- Smooths distributions
- Moves weight onto more informative features
- Enables effective use of larger numbers of features
- Can speed up convergence
Summary: Training

- Many training methods:
 - Generalized Iterative Scaling (GIS)

- Smoothing:
 - Early stopping, feature selection, regularization

- Regularization:
 - Change objective function – add prior
 - Common prior: Gaussian prior
 - Maximizing posterior not equivalent to max ent
MaxEnt POS Tagging
Notation

- (Ratnaparkhi, 1996)
- h: history $\Rightarrow x$
 - Word and tag history
- t: tag $\Rightarrow y$
POS Tagging Model

- \(P(t_1, \ldots, t_n | w_1, \ldots, w_n) \)
 \[
 = \prod_{i=1}^{n} P(t_i | w_1^n, t_i^{i-1})
 \]
 \[
 \approx \prod_{i=1}^{n} P(t_i | h_i)
 \]
 \[
 p(t | h) = \frac{p(t, h)}{\sum_{t' \in T} p(t', h)}
 \]

- where \(h_i = \{w_i, w_{i-1}, w_{i-2}, w_{i+1}, w_{i+2}, t_{i-1}, t_{i-2}\} \)
MaxEnt Feature Set

<table>
<thead>
<tr>
<th>Condition</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_i is not rare</td>
<td>$w_i = X$ & $t_i = T$</td>
</tr>
<tr>
<td>w_i is rare</td>
<td>X is prefix of w_i, $</td>
</tr>
<tr>
<td></td>
<td>X is suffix of w_i, $</td>
</tr>
<tr>
<td></td>
<td>w_i contains number & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>w_i contains uppercase character & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>w_i contains hyphen & $t_i = T$</td>
</tr>
<tr>
<td>$\forall w_i$</td>
<td>$t_{i-1} = X$ & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>$t_{i-2}t_{i-1} = XY$ & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>$w_{i-1} = X$ & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>$w_{i-2} = X$ & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>$w_{i+1} = X$ & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>$w_{i+2} = X$ & $t_i = T$</td>
</tr>
</tbody>
</table>
Example

- Feature for ‘about’

\[
\begin{align*}
 w_i &= \text{about} & t_i &= \text{IN} \\
 w_{i-1} &= \text{stories} & t_i &= \text{IN} \\
 w_{i-2} &= \text{the} & t_i &= \text{IN} \\
 w_{i+1} &= \text{well-heeled} & t_i &= \text{IN} \\
 w_{i+2} &= \text{communities} & t_i &= \text{IN} \\
 t_{i-1} &= \text{NNS} & t_i &= \text{IN} \\
 t_{i-2} t_{i-1} &= \text{DT NNS} & t_i &= \text{IN}
\end{align*}
\]

Exclude features seen < 10 times
Training

- GIS

- Training time: $O(NTA)$
 - N: training set size
 - T: number of tags
 - A: average number of features active for event (h,t)

- 24 hours on a ‘96 machine
Finding Features

- In training, where do features come from?
- Where do features come from in testing?

<table>
<thead>
<tr>
<th></th>
<th>(w_{-1})</th>
<th>(w_0)</th>
<th>(w_{-1}w_0)</th>
<th>(w_{+1})</th>
<th>(t_{-1})</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1) (Time)</td>
<td>(<s>)</td>
<td>Time</td>
<td>(<s>Time)</td>
<td>flies</td>
<td>BOS</td>
<td>N</td>
</tr>
<tr>
<td>(x_2) (flies)</td>
<td>Time</td>
<td>flies</td>
<td>Time flies</td>
<td>like</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(x_3) (like)</td>
<td>flies</td>
<td>like</td>
<td>flies like</td>
<td>an</td>
<td>N</td>
<td>V</td>
</tr>
</tbody>
</table>
Finding Features

- In training, where do features come from?
- Where do features come from in testing?
 - tag features come from classification of prior word

<table>
<thead>
<tr>
<th></th>
<th>(w_{-1})</th>
<th>(w_0)</th>
<th>(w_{-1}w_0)</th>
<th>(w_{+1})</th>
<th>(t_{-1})</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1) (Time)</td>
<td>(<s>)</td>
<td>Time</td>
<td>(<s>)Time</td>
<td>flies</td>
<td>BOS</td>
<td>N</td>
</tr>
<tr>
<td>(x_2) (flies)</td>
<td>Time</td>
<td>flies</td>
<td>Time flies</td>
<td>like</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(x_3) (like)</td>
<td>flies</td>
<td>like</td>
<td>flies like</td>
<td>an</td>
<td>N</td>
<td>V</td>
</tr>
</tbody>
</table>
Decoding

- Goal: Identify highest probability tag sequence
Decoding

- **Goal:** Identify highest probability tag sequence
- **Issues:**
 - Features include tags from previous words
 - Not immediately available
Decoding

- Goal: Identify highest probability tag sequence
- Issues:
 - Features include tags from previous words
 - Not immediately available
 - Uses tag **history**
 - Just knowing highest probability preceding tag insufficient
Beam Search

- **Intuition:**
 - Breadth-first search explores all paths
 - Lots of paths are (pretty obviously) bad
 - Why explore bad paths?
 - Restrict to (apparently best) paths

- **Approach:**
 - Perform breadth-first search, *but*
Beam Search

- Intuition:
 - Breadth-first search explores all paths
 - Lots of paths are (pretty obviously) bad
 - Why explore bad paths?
 - Restrict to (apparently best) paths

- Approach:
 - Perform breadth-first search, *but*
 - Retain only k ‘best’ paths thus far
 - k: beam width
Beam Search, k=3

<s> time flies like an arrow
Beam Search, $k=3$

<s> time flies like an arrow
Beam Search, $k=3$

<s> time flies like an arrow
Beam Search, $k=3$
Beam Search, $k=3$

$\langle s \rangle \quad \text{time} \quad \text{flies} \quad \text{like} \quad \text{an} \quad \text{arrow}$
Beam Search

- $W = \{w_1, w_2, \ldots, w_n\}$: test sentence
Beam Search

- $W=\{w_1, w_2, \ldots, w_n\}$: test sentence
- s_{ij}: j^{th} highest prob. sequence up to & inc. word w_i
Beam Search

- $W = \{w_1, w_2, \ldots, w_n\}$: test sentence
- s_{ij}: j^{th} highest prob. sequence up to & inc. word w_i
- Generate tags for w_1, keep top k, set s_{1j} accordingly
Beam Search

- \(W = \{w_1, w_2, \ldots, w_n\} \): test sentence
- \(s_{ij} \): \(j^{th} \) highest prob. sequence up to & inc. word \(w_i \)
- Generate tags for \(w_1 \), keep top \(k \), set \(s_{1j} \) accordingly
- for \(i = 2 \) to \(n \):
Beam Search

- $W=\{w_1, w_2, ..., w_n\}$: test sentence
- s_{ij}: j^{th} highest prob. sequence up to & inc. word w_i
- Generate tags for w_1, keep top k, set s_{1j} accordingly
- for $i=2$ to n:
 - Extension: add tags for w_i to each $s_{(i-1)j}$
Beam Search

- \(W = \{w_1, w_2, \ldots, w_n\} \): test sentence
- \(s_{ij} \): \(j^{\text{th}} \) highest prob. sequence up to & incl. word \(w_i \)
- Generate tags for \(w_1 \), keep top \(k \), set \(s_{1j} \) accordingly
- for \(i=2 \) to \(n \):
 - Extension: add tags for \(w_i \) to each \(s_{(i-1)j} \)
 - Beam selection:
 - Sort sequences by probability
 - Keep only top \(k \) sequences
Beam Search

- $W = \{w_1, w_2, \ldots, w_n\}$: test sentence
- s_{ij}: j^{th} highest prob. sequence up to & inc. word w_i
- Generate tags for w_1, keep topN, set s_{1j} accordingly
- for $i=2$ to n:
 - For each $s_{(i-1)j}$
 - for w_i form vector, keep topN tags for w_i
 - Beam selection:
 - Sort sequences by probability
 - Keep only top sequences, using pruning on next slide
- Return highest probability sequence s_{n1}
Beam Search

- Pruning and storage:
 - $W = \text{beam width}$
 - For each node, store:
 - Tag for w_i
 - Probability of sequence so far, $\text{prob}_{i,j} = \prod_{j=1}^{t} p(t_j | h_j)$
 - For each candidate j, $s_{i,j}$
 - Keep the node if $\text{prob}_{i,j}$ in topK, and
 - $\text{prob}_{i,j}$ is sufficiently high
 - e.g. $\log(\text{prob}_{i,j}) + W \geq \log(\text{max_prob})$
Decoding

- Tag dictionary:
 - known word: returns tags seen with word in training
 - unknown word: returns all tags

- Beam width = 5

- Running time: $O(NTAB)$
 - N, T, A as before
 - B: beam width
POS Tagging

- Overall accuracy: 96.3+%
- Unseen word accuracy: 86.2%
- Comparable to HMM tagging accuracy or TBL
- Provides
 - Probabilistic framework
 - Better able to model different info sources
- Topline accuracy 96-97%
 - Consistency issues
Beam Search

- Beam search decoding:
 - Variant of breadth first search
 - At each layer, keep only top k sequences

- Advantages:
Beam Search

- Beam search decoding:
 - Variant of breadth first search
 - At each layer, keep only top k sequences

- Advantages:
 - Efficient in practice: beam 3-5 near optimal
 - Empirically, beam 5-10% of search space; prunes 90-95%
Beam Search

- Beam search decoding:
 - Variant of breadth first search
 - At each layer, keep only top k sequences

- Advantages:
 - Efficient in practice: beam 3-5 near optimal
 - Empirically, beam 5-10% of search space; prunes 90-95%
 - Simple to implement
 - Just extensions + sorting, no dynamic programming
Beam Search

- Beam search decoding:
 - Variant of breadth first search
 - At each layer, keep only top k sequences

- Advantages:
 - Efficient in practice: beam 3-5 near optimal
 - Empirically, beam 5-10% of search space; prunes 90-95%
 - Simple to implement
 - Just extensions + sorting, no dynamic programming
 - Running time:
Beam Search

- Beam search decoding:
 - Variant of breadth first search
 - At each layer, keep only top sequences

- Advantages:
 - Efficient in practice: beam 3-5 near optimal
 - Empirically, beam 5-10% of search space; prunes 90-95%
 - Simple to implement
 - Just extensions + sorting, no dynamic programming

- Disadvantage: Not guaranteed optimal (or complete)
MaxEnt POS Tagging

- Part of speech tagging by classification:
 - Feature design
 - word and tag context features
 - orthographic features for rare words
MaxEnt POS Tagging

- Part of speech tagging by classification:
 - Feature design
 - word and tag context features
 - orthographic features for rare words

- Sequence classification problems:
 - Tag features depend on prior classification
MaxEnt POS Tagging

- Part of speech tagging by classification:
 - Feature design
 - word and tag context features
 - orthographic features for rare words

- Sequence classification problems:
 - Tag features depend on prior classification

- Beam search decoding
 - Efficient, but inexact
 - Near optimal in practice