Multi-Class Classification

Advanced Statistical Methods in NLP
Ling 572
February 14, 2012
Roadmap

• Motivation:
 • Binary and Multi-class: problems and classifiers

• Solving Multi-class problems with binary classifiers
 • One-vs-all
 • All-pairs
 • Error correcting output codes (ECOC) – overview
Classification Problems

- Some are naturally binary:
Classification Problems

- Some are naturally binary:
 - Spam tagging: Spam vs not-Spam
Classification Problems

- Some are naturally binary:
 - Spam tagging: Spam vs not- Spam
 - Segmentation tasks: Boundary vs Non-boundary
Classification Problems

- Some are naturally binary:
 - Spam tagging: Spam vs not-Spam

- Segmentation tasks: Boundary vs Non-boundary
 - X1 X2 X3 X4 X5 X6 X7
Classification Problems

- Some are naturally binary:
 - Spam tagging: Spam vs not-Spam

- Segmentation tasks: Boundary vs Non-boundary
 - X1 X2 X3 X4 X5 X6 X7
 - X1 X2 b X3 X4 X5 b X6 X7 b
 - Word, Sentence, topic, story
Classification Problems

- Some are naturally binary:
 - Spam tagging: Spam vs not-Spam

- Segmentation tasks: Boundary vs Non-boundary
 - X1 X2 X3 X4 X5 X6 X7
 - X1 X2 b X3 X4 X5 b X6 X7 b
 - Word, Sentence, topic, story

- Coreference:
 - Are two entities coreferent?
Classification Problems

- Many (most?) are multi-class
Classification Problems

- Many (most?) are multi-class
- Most text classification:
Classification Problems

- Many (most?) are multi-class
- Most text classification:
 - e.g. guns vs mideast vs misc
Classification Problems

- Many (most?) are multi-class
 - Most text classification:
 - e.g. guns vs mideast vs misc

- Part-of-Speech tagging:
Classification Problems

- Many (most?) are multi-class
 - Most text classification:
 - e.g. guns vs mideast vs misc

- Part-of-Speech tagging:
 - NN vs NNP vs VBZ vs RB vs DT vs.....
Classification Problems

- Many (most?) are multi-class
 - Most text classification:
 - e.g. guns vs mideast vs misc

- Part-of-Speech tagging:
 - NN vs NNP vs VBZ vs RB vs DT vs.....

- Named Entity Extraction:
Classification Problems

- Many (most?) are multi-class
- Most text classification:
 - e.g. guns vs mideast vs misc

- Part-of-Speech tagging:
 - NN vs NNP vs VBZ vs RB vs DT vs.....

- Named Entity Extraction:
 - B-PER, I-PER, B-ORG, I-ORG, O,.....
 - etc
Classifiers

- Also, binary or multi-class
Classifiers

- Also, binary or multi-class
- Many so far are directly multi-class
 - Specifically, can output more than two class labels
Classifiers

- Also, binary or multi-class
- Many so far are directly multi-class
 - Specifically, can output more than two class labels
 - Decision trees, Naïve Bayes, MaxEnt
Classifiers

- Also, binary or multi-class
- Many so far are directly multi-class
 - Specifically, can output more than two class labels
 - Decision trees, Naïve Bayes, MaxEnt

- Many other useful classifiers are basically binary
 - Perceptrons
 - Neural Networks
 - Support Vector Machines (next)
If some classifiers are basically binary,
Does that mean we can only use them on binary tasks?
Binary & Multiclass: Classification & Classifiers

- If some classifiers are basically binary,
- Does that mean we can only use them on binary tasks?
- No!
Binary & Multiclass: Classification & Classifiers

- If some classifiers are basically binary,
 - Does that mean we can only use them on binary tasks?
- No!
 - Otherwise this would be a very short class....
Binary & Multiclass: Classification & Classifiers

- If some classifiers are basically binary,
 - Does that mean we can only use them on binary tasks?

- No!
 - Otherwise this would be a very short class....

- Basic idea:
 - Decompose multi-class tasks into set of binary tasks
 - Create ensemble of binary classifiers for binary tasks
 - Combine outputs of ensemble as multi-class classifier
Questions & Approaches

• Questions:
 • How do we represent multi-class task in binary form?
Questions & Approaches

Questions:
- How do we represent multi-class task in binary form?
- How do we integrate the outputs of binary classification for multiclass output?
Questions & Approaches

- Questions:
 - How do we represent multi-class task in binary form?
 - How do we integrate the outputs of binary classification for multiclass output?

- Approaches:
 - Correspond to different decompositions/integrations
 - One-vs-all
 - All-pairs
 - Error-correcting Output Codes (ECOC)
Multi-class via 1-vs-All

- Basic idea:
 - Which binary classifiers?
Multi-class via 1-vs-All

- Basic idea:
 - Which binary classifiers?
 - Instead of a single classifier with multiple outputs
 - Create classifiers that distinguish each class from all others
Multi-class via 1-vs-All

- Basic idea:
 - Which binary classifiers?
 - Instead of a single classifier with multiple outputs
 - Create classifiers that distinguish each class from all others
 - E.g. for POS tagging: DT vs not-DT, NN vs not-NN, etc
 - Combined how?
Multi-class via 1-vs-All

• Basic idea:
 • Which binary classifiers?
 • Instead of a single classifier with multiple outputs
 • Create classifiers that distinguish each class from all others
 • E.g. for POS tagging: DT vs not-DT, NN vs not-NN, etc

• Combined how?
 • For each instance, run all classifiers
 • Return classifier with highest confidence/score
Training

- Create training data for 1-vs-all classifiers
- How many 1-vs-all classifiers?
Training

- Create training data for 1-vs-all classifiers
- How many 1-vs-all classifiers?
 - 1 per class: k-classes \rightarrow k binary classifiers
- How do we map from multi-class training to binary?
Training

- Create training data for 1-vs-all classifiers

- How many 1-vs-all classifiers?
 - 1 per class: k-classes \rightarrow k binary classifiers

- How do we map from multi-class training to binary?
 - For each class c_m,
 - For each training instance (x,y)
 - if $y = c_m$, create instance $(x,1)$
 - otherwise, create instance $(x,-1)$
Example: Training

- Original Data:
 - x1 c1 ...
 - x2 c3
 - x3 c1
 - x4 c2 ...

- 1-vs-all Training Data:
Example: Training

- Original Data:
 - x1 c1 ...
 - x2 c3
 - x3 c1
 - x4 c2 ...

- 1-vs-all Training Data:

- c1-vs-all:
Example: Training

- Original Data:
 - x1 c1
 - x2 c3
 - x3 c1
 - x4 c2

- 1-vs-all Training Data:

- c1-vs-all:
 - x1 1
 - x2 -1
 - x3 1
 - x4 -1

- c2-vs-all:
Example: Training

- Original Data:
 - x1 c1 ...
 - x2 c3
 - x3 c1
 - x4 c2

- 1-vs-all Training Data:

- c1-vs-all:
 - x1 1
 - x2 -1
 - x3 1
 - x4 -1

- c2-vs-all:
 - x1 -1
 - x2 -1
 - x3 -1
 - x4 1

- c3-vs-all:
 - x1 -1
 - x2 1
 - x3 -1
 - x4 -1
Testing Example

- For each testing instance x,
 - Classify using all classifiers
 - Select
 - class $c^* = \arg\max_m c_l_m(x)$
For each testing instance x, classify using all classifiers and select
$$\text{class } c^* = \arg\max_m c_l_m(x)$$
Consider example x

- Classifier c_1-vs-all:
 - $x \ 1 \ 0.7 \ -1 \ 0.3$
- Classifier c_2-vs-all:
 - $x \ 1 \ 0.2 \ -1 \ 0.8$
- Classifier c_3-vs-all:
 - $x \ 1 \ 0.6 \ -1 \ 0.4$
- x?
All-pairs

• Basic idea:
 • Which binary classifiers?
 • Instead of a single classifier with multiple outputs
 • Create classifiers that distinguish each pair of classes
All-pairs

• Basic idea:
 • Which binary classifiers?
 • Instead of a single classifier with multiple outputs
 • Create classifiers that distinguish each pair of classes
 • e.g. POS: DT vs NN; DT vs RB; DT vs JJ; DT vs VBZ;...

• Combined how?
 • For each instance, run all classifiers
All-pairs

- Basic idea:
 - Which binary classifiers?
 - Instead of a single classifier with multiple outputs
 - Create classifiers that distinguish each pair of classes
 - e.g. POS: DT vs NN; DT vs RB; DT vs JJ; DT vs VBZ;...

- Combined how?
 - For each instance, run all classifiers
 - Return most frequent classification label
Training

- Create training data for all-pairs classifiers
- How many all-pairs classifiers?
Training

- Create training data for all-pairs classifiers

- How many all-pairs classifiers?
 - k classes $\rightarrow O(k^2)$ binary classifiers
 - $k(k-1)/2$ actually
Training

- Create training data for all-pairs classifiers
- How many all-pairs classifiers?
 - k classes $\Rightarrow O(k^2)$ binary classifiers
 - $k(k-1)/2$ actually
- How do we map from multi-class training to binary?
Training

• Create training data for all-pairs classifiers

• How many all-pairs classifiers?
 • k classes \(\rightarrow O(k^2) \) binary classifiers
 • \(k(k-1)/2 \) actually

• How do we map from multi-class training to binary?
 • For each class \(c_i \),
 • For each class \(c_j \), \(i<j<k \),
 • for each instance \((x,y) \)
 • if \(y=c_i \), create instance \((x,1) \)
 • if \(y=c_j \), create instance \((x,-1) \),
 • o.w. ignore
Example: Training

- Original Data:
 - x1 c1 ...
 - x2 c3
 - x3 c1
 - x4 c2 ...

- All-pairs Training Data:

 - c1-vs-c2:
Example: Training

- Original Data:
 - x1 c1 ...
 - x2 c3
 - x3 c1
 - x4 c2 ...

- All-pairs Training Data:
 - c1-vs-c2:
 - x1 1
 - x3 1
 - x4 -1
 - c2-vs-c3:
 - c1-vs-c3:
Example: Training

- Original Data:
 - x1 c1
 - x2 c3
 - x3 c1
 - x4 c2

- All-pairs Training Data:
 - c1-vs-c2:
 - x1 1
 - x3 1
 - x4 -1
 - c1-vs-c3:
 - x1 1
 - x2 -1
 - x3 1
 - c2-vs-c3:
Example: Training

- **Original Data:**
 - x1 c1
 - x2 c3
 - x3 c1
 - x4 c2

- **All-pairs Training Data:**
 - **c1-vs-c2:**
 - x1 1
 - x3 1
 - x4 -1

 - **c1-vs-c3:**
 - x1 1
 - x2 -1
 - x3 1

 - **c2-vs-c3:**
 - x2 -1
 - x4 1
Testing Example

- For each testing instance x,
 - Classify using all classifiers
 - Select
 - class c with most votes
 - Other variants

- Consider example x
Testing Example

- For each testing instance \(x \),
 - Classify using all classifiers
 - Select
 - class \(c \) with most votes
 - Other variants

- Consider example \(x \)

- Classifier \(c_{1}\text{-vs-}c_{2} \):
 - \(x \ 1 \ 0.7 \ -1 \ 0.3 \)

- Classifier \(c_{2}\text{-vs-}c_{3} \):
 - \(x \ 1 \ 0.2 \ -1 \ 0.8 \)

- Classifier \(c_{1}\text{-vs-}c_{3} \):
 - \(x \ 1 \ 0.6 \ -1 \ 0.4 \)

- \(x? \)
Error-Correcting Output Codes

- Dietterich & Bakiri, 1995

- Basic idea:
 - Each class assigned a binary string of length n (codeword)
Error-Correcting Output Codes

- Dietterich & Bakiri, 1995

- Basic idea:
 - Each class assigned a binary string of length n (codeword)
 - Each bit position corresponds to output of classifier
Error-Correcting Output Codes

- Dietterich & Bakiri, 1995

- Basic idea:
 - Each class assigned a binary string of length n (codeword)
 - Each bit position corresponds to output of classifier
 - Training: train 1 classifier per bit position
Error-Correcting Output Codes

- Dietterich & Bakiri, 1995

- Basic idea:
 - Each class assigned a binary string of length n (codeword)
 - Each bit position corresponds to output of classifier
 - Training: train 1 classifier per bit position
 - Testing: apply each classifier to compute new codeword
 - Assign class with closest codeword
Example: Digit Recognition

- 6-bit code for 10-class problem

- Each column:
 - \(\text{Binary function with meaning} \)

- Each row:
 - \(\text{Codeword for class/digit} \)

<table>
<thead>
<tr>
<th>Column position</th>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vl</td>
<td>contains vertical line</td>
</tr>
<tr>
<td>2</td>
<td>hl</td>
<td>contains horizontal line</td>
</tr>
<tr>
<td>3</td>
<td>dl</td>
<td>contains diagonal line</td>
</tr>
<tr>
<td>4</td>
<td>cc</td>
<td>contains closed curve</td>
</tr>
<tr>
<td>5</td>
<td>ol</td>
<td>contains curve open to left</td>
</tr>
<tr>
<td>6</td>
<td>or</td>
<td>contains curve open to right</td>
</tr>
</tbody>
</table>
Direct Codes for Digit Recognition

<table>
<thead>
<tr>
<th>Class</th>
<th>Code Word</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vl</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>
ECOC for Digit Recognition

- Error correcting code for digit recognition
- 15-bit code for 10 class problem

<table>
<thead>
<tr>
<th>Class</th>
<th>f_0</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>f_5</th>
<th>f_6</th>
<th>f_7</th>
<th>f_8</th>
<th>f_9</th>
<th>f_{10}</th>
<th>f_{11}</th>
<th>f_{12}</th>
<th>f_{13}</th>
<th>f_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Decoding

- Decoding:
 - Label test instance with class with “closest” codeword
Decoding

- Decoding:
 - Label test instance with class with “closest” codeword

- What’s “closest”?
Decoding

- Decoding:
 - Label test instance with class with “closest” codeword

- What’s “closest”?
 - Many distances: Euclidean, cosine, Manhattan, etc

- Here, Hamming distance:
Decoding

- Decoding:
 - Label test instance with class with “closest” codeword

- What’s “closest”?
 - Many distances: Euclidean, cosine, Manhattan, etc

- Here, Hamming distance:
 - Count of number of bits that differ
 - E.g. 110001 maps to 110000
Decoding

- Decoding:
 - Label test instance with class with “closest” codeword
- What’s “closest”?
 - Many distances: Euclidean, cosine, Manhattan, etc
- Here, Hamming distance:
 - Count of number of bits that differ
 - E.g. 110001 maps to 110000
 - Hamming distance = 1
Error Correcting Output Codes

- Intuition:
 - Output class ‘transmitted’ through a noisy channel
 - Transmit via: features, training data, learning alg.
 - Errors may be introduced due to:
 - limited training data, bad features, poor learning
Error Correcting Output Codes

- **Intuition:**
 - Output class ‘transmitted’ through a noisy channel
 - Transmit via: features, training data, learning alg.
 - Errors may be introduced due to:
 - limited training data, bad features, poor learning

- ‘Meaningful’ or class-based codes non-optimal
Error Correcting Output Codes

- Intuition:
 - Output class ‘transmitted’ through a noisy channel
 - Transmit via: features, training data, learning alg.
 - Errors may be introduced due to:
 - limited training data, bad features, poor learning
- ‘Meaningful’ or class-based codes non-optimal
- Error-correcting codes can recover from some bit errors
Error Correction

- Quality of ECC:
 - Minimum distance b/t pair of codewords

- Error correction:
Error Correction

- Quality of ECC:
 - Minimum distance between a pair of codewords

- Error correction:
 - Minimum Hamming distance between codes: d
Error Correction

- Quality of ECC:
 - Minimum distance between pair of codewords

- Error correction:
 - Minimum Hamming distance between codes: d
 - Number of correctable single bit errors: $\left\lfloor \frac{d - 1}{2} \right\rfloor$
Error Correction

- Quality of ECC:
 - Minimum distance between pair of codewords

- Error correction:
 - Minimum Hamming distance between codes: d
 - Number of correctable single bit errors: $\left\lfloor \frac{d-1}{2} \right\rfloor$
 - ‘Meaningful’ digit codes: Minimum distance = 1
 - No correction capacity
Comparison

- Direct multiclass, One-bit-per-class, ECOC
- Decision trees
Creating Error Correcting Codes

- ECOC: Matrix
 - # columns: code length
 - # rows: # classes
 - Row = codeword
Creating Error Correcting Codes

- **ECOC: Matrix**
 - # columns: code length
 - # rows: # classes
 - Row = codeword

- Requirements for good codes:
 - Row separation:
 - Codewords well-separated in Hamming distance
Creating Error Correcting Codes

- ECOC: Matrix
 - # columns: code length
 - # rows: # classes
 - Row = codeword

- Requirements for good codes:
 - Row separation:
 - Codewords well-separated in Hamming distance
 - Column separation:
 - Columns should be uncorrelated with each other
Creating Error Correcting Codes

- ECOC: Matrix
 - # columns: code length
 - # rows: # classes
 - Row = codeword

- Requirements for good codes:
 - Row separation:
 - Codewords well-separated in Hamming distance
 - Column separation:
 - Columns should be uncorrelated with each other
 - Columns well-separated in Hamming distance
 - w.r.t. each other, and complement other columns
 - Complement b/c many classifiers symmetric
ECOC

- Tricky to create for < 5 classes
ECOC

- Tricky to create for < 5 classes
- With few classes limited # of distinct columns

<table>
<thead>
<tr>
<th>Class</th>
<th>f_0</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>f_5</th>
<th>f_6</th>
<th>f_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
ECOC

- Tricky to create for < 5 classes
- With few classes limited # of distinct columns
 - e.g. 3 classes: $2^3 = 8$ possible columns
 - Last 4 are complements of first 4
 - All same \rightarrow non-discriminative
 - Only 3 distinct = # of classes
ECOC

- Tricky to create for < 5 classes
- With few classes limited # of distinct columns
 - e.g. 3 classes, $2^3 = 8$ possible columns
 - Last 4 are complements of first 4
 - All same \rightarrow non-discriminative
 - Only 3 distinct = # of classes
 - for k classes: $2^{k-1} - 1$ usable columns
Approaches for ECOC

- Many techniques:
 - Exhaustive codes
 - Column selection from exhaustive codes
 - Randomized hill-climbing
 - BCH codes...
Multi-classification Methods

- Approaches:
 - Direct multiclass
 - One-vs-all: k binary classifiers
 - All-pairs: $O(k^2)$ binary classifiers
 - ECOC: n binary classifiers (codeword length n)
Multi-classification Methods

- **Approaches:**
 - Direct multiclass
 - One-vs-all: k binary classifiers
 - All-pairs: $O(k^2)$ binary classifiers
 - ECOC: n binary classifiers (codeword length n)

- **Effectiveness:**
 - In experiments, all-pairs and ECOC often outperform one-vs-all