Nearest Neighbor

Ling 572
Advanced Statistical Methods in NLP
January 12, 2012
Roadmap

• Instance-based learning
 • Examples and Motivation

• Basic algorithm: k-Nearest Neighbors

• Issues:
 • Selecting
 • Weighting
 • Voting

• Summary

• HW #2
Instance-based Learning

- aka “Lazy Learning”
 - No explicit training procedure
 - Just store / tabulate training instances

- Many examples:
 - k-Nearest Neighbor (kNN)
 - Locally weighted regression
 - Radial basis functions
 - Case-based reasoning

- kNN : most widely used variant
Nearest Neighbor Example I

- Problem: Robot arm motion
 - Difficult to model analytically
 - Kinematic equations
 - Relate joint angles and manipulator positions
 - Dynamics equations
 - Relate motor torques to joint angles
 - Difficult to achieve good results modeling robotic arms or human arm
 - Many factors & measurements
Nearest Neighbor Example

- Solution:
 - Move robot arm around
 - Record parameters and trajectory segment
 - Table: torques, positions, velocities, squared velocities, velocity products, accelerations
 - To follow a new path:
 - Break into segments
 - Find closest segments in table
 - Get those torques (interpolate as necessary)
Nearest Neighbor Example

- Issue: Big table
 - First time with new trajectory
 - “Closest” isn’t close
 - Table is sparse - few entries

- Solution: Practice
 - As attempt trajectory, fill in more of table
 - After few attempts, very close
Nearest Neighbor Example II

- Topic Tracking

- Task: Given a sample number of exemplar documents, find other documents on same topic

- Approach:
 - Features: ‘terms’ : words or phrases, stemmed
 - Weights: tf-idf: term frequency, inverse document freq
 - Modified
 - New document : assign label of nearest neighbors
Instance-based Learning III

- Example-based Machine Translation (EBMT)
- Task: Translation in the sales domain

Approach:
- Collect translation pairs:
 - Source language: target language
 - Decompose into subphrases via minimal pairs
 - How much is that red umbrella? Ano akai kasa wa ikura desu ka.
 - How much is that small camera? Ano chiisai kamera wa ikura desu ka.

- New sentence to translate:
 - Find most similar source language subunits
 - Compose corresponding subunit translations
Nearest Neighbor

- Memory- or case- based learning
- Consistency heuristic: Assume that a property is the same as that of the nearest reference case.
- Supervised method: Training
 - Record labelled instances and feature-value vectors
- For each new, unlabelled instance
 - Identify “nearest” labelled instance(s)
 - Assign same label
Nearest Neighbor Example

- Credit Rating:
 - Classifier: Good / Poor
- Features:
 - $L = \#$ late payments/yr;
 - $R =$ Income/Expenses

<table>
<thead>
<tr>
<th>Name</th>
<th>L</th>
<th>R</th>
<th>G/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1.2</td>
<td>G</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>0.4</td>
<td>P</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0.7</td>
<td>G</td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td>0.8</td>
<td>P</td>
</tr>
<tr>
<td>E</td>
<td>30</td>
<td>0.85</td>
<td>P</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>1.2</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>1.15</td>
<td>G</td>
</tr>
<tr>
<td>H</td>
<td>15</td>
<td>0.8</td>
<td>P</td>
</tr>
</tbody>
</table>
Nearest Neighbor Example

<table>
<thead>
<tr>
<th>Name</th>
<th>L</th>
<th>R</th>
<th>G/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1.2</td>
<td>G</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>0.4</td>
<td>P</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0.7</td>
<td>G</td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td>0.8</td>
<td>P</td>
</tr>
<tr>
<td>E</td>
<td>30</td>
<td>0.85</td>
<td>P</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>1.2</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>1.15</td>
<td>G</td>
</tr>
<tr>
<td>H</td>
<td>15</td>
<td>0.8</td>
<td>P</td>
</tr>
</tbody>
</table>
Nearest Neighbor Example

<table>
<thead>
<tr>
<th>Name</th>
<th>L</th>
<th>R</th>
<th>G/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>22</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Nearest Neighbor Example

<table>
<thead>
<tr>
<th>Name</th>
<th>L</th>
<th>R</th>
<th>G/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>22</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

The table and diagram illustrate the nearest neighbor algorithm with points A, B, C, D, E, F, IG, and H. Point I is closest to point A in the diagram.
Nearest Neighbor Example

<table>
<thead>
<tr>
<th>Name</th>
<th>L</th>
<th>R</th>
<th>G/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>1.15</td>
<td>G</td>
</tr>
<tr>
<td>J</td>
<td>22</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Nearest Neighbor Example

<table>
<thead>
<tr>
<th>Name</th>
<th>L</th>
<th>R</th>
<th>G/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>1.15</td>
<td>G</td>
</tr>
<tr>
<td>J</td>
<td>22</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image-url)
Nearest Neighbor Example

<table>
<thead>
<tr>
<th>Name</th>
<th>L</th>
<th>R</th>
<th>G/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>1.15</td>
<td>G</td>
</tr>
<tr>
<td>J</td>
<td>22</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Nearest Neighbor Example

<table>
<thead>
<tr>
<th>Name</th>
<th>L</th>
<th>R</th>
<th>G/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>1.15</td>
<td>G</td>
</tr>
<tr>
<td>J</td>
<td>22</td>
<td>0.45</td>
<td>P</td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>1.2</td>
<td>??</td>
</tr>
</tbody>
</table>

![Graph showing nearest neighbor example with points A, B, C, D, E, F, G, H, I, J, and K plotted on a grid with L, R, and G/P values.](image-url)
Nearest Neighbor Example

<table>
<thead>
<tr>
<th>Name</th>
<th>L</th>
<th>R</th>
<th>G/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>1.15</td>
<td>G</td>
</tr>
<tr>
<td>J</td>
<td>22</td>
<td>0.45</td>
<td>P</td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>1.2</td>
<td>??</td>
</tr>
</tbody>
</table>
Nearest Neighbor Example

<table>
<thead>
<tr>
<th>Name</th>
<th>L</th>
<th>R</th>
<th>G/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>1.15</td>
<td>G</td>
</tr>
<tr>
<td>J</td>
<td>22</td>
<td>0.45</td>
<td>P</td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>1.2</td>
<td>??</td>
</tr>
</tbody>
</table>

Distance Measure:
Scaled distance

\[
\sqrt{(L_1 - L_2)^2 + [\sqrt{10}(R_1 - R_2)]^2}
\]
k Nearest Neighbor

- Determine a value k
- Calculate the distance between new instance and all training instances
- Sort training instances by distance; select k nearest
- Identify labels of k nearest neighbors
- Use voting mechanism on k to determine classification
Issues:

- What’s K?
- How do we weight/scale/select features?
- How do we combine instances by voting?
Selecting K

- Just pick a number?
- Percentage of samples?
- Cross-validation:
 - Split data into
 - Training set (and validation set)
 - Development set
 - Test set
 - Pick k with lowest cross-validation error
 - Under n-fold cross-validation
Feature Values

• Scale:
 • Remember credit rating
 • Features: income/outgo ratio [0.5,2]
 • Late payments: [0,30]; ...
 • AGI: [8K,500K]

• What happens with Euclidean distance?
 • Features with large magnitude dominate

• Approach:
 • Rescale: i.e. normalize to [0,1]
Feature Selection

- Consider:
 - Large feature set (100)
 - Few relevant features (2)

- What happens?
 - Trouble!
 - Differences in irrelevant features likely to dominate

- k-NN sensitive to irrelevant attributes in high dimensional feature space
 - Can be useful, but feature selection is key
Feature Weighting

- What if you want some features to be more important?
 - Or less important

- Reweighting a dimension i by weight w_i
 - Can increase or decrease weight of feature on that dim.
 - Set weight to 0?
 - Ignores corresponding feature

- How can we set the weights?
 - Cross-validation ;·)
Distance Measures

- Euclidean distance:
 \[dist(x, y) = \sqrt{\sum_k (x_k - y_k)^2} \]

- Weighted Euclidean distance:
 \[dist(x, y) = \sqrt{\sum_k w_k (x_k - y_k)^2} \]

- Cosine similarity:
 \[\cos sim(x, y) = \frac{\sum_k x_k y_k}{\sqrt{\sum_k x_k^2} \sqrt{\sum_k y_k^2}} \]
Voting in kNN

- Suppose we have found the k nearest neighbors

- Let $f_i(x)$ be the class label of i^{th} neighbor of x

- $\delta(c, f_i(x))$ is 1 if $f_i(x) = c$ and 0 otherwise

- Then $g(c) = \sum_i \delta(c, f_i(x))$: # of neighbors with label c
Voting in kNN

• Alternatives:
 • Majority vote: \(c^* = \text{argmax}_c \ g(c) \)

 • Weighted voting: neighbors have different weights
 • \(c^* = \text{argmax}_c \ \sum_i w_i \delta(c, f_i(x)) \)

 • Weighted voting allows use many training examples
 • Could use all samples weighted by inverse distance
kNN: Strengths

- Advantages:
 - Simplicity (conceptual)
 - Efficiency (in training)
 - No work at all
 - Handles multi-class classification
 - Stability/robustness: average of many neighbor votes
 - Accuracy: with large data set
kNN: Weaknesses

- Disadvantages:
 - (In)eﬃciency at testing time
 - Distance computation for all N at test time
 - Lack of theoretical basis
 - Sensitivity to irrelevant features
 - Distance metrics unclear on non-numerical/binary values
HW #2

- Decision trees

- Text classification:
 - Same data, categories as Q5 (Ling570: HW #8)

- Features: Words

- Build and evaluate decision trees with Mallet
- Build and evaluate decision trees with your own code
Building your own DT learner

- Nodes test single feature
- Features are binary:
 - Present/not present
 - DT is binary branching
- Selection criterion:
 - Information gain
- Early stopping heuristics:
 - Information gain above threshold
 - Tree depth below threshold
Efficiency

Caution:
- There are LOTS of features
- You’ll be testing whether or not a feature is present for each class repeatedly
 - (c,f) or (c,\sim f)
 - Think about ways to do this efficiently
Efficient Implementations

- Classification cost:
 - Find nearest neighbor: $O(n)$
 - Compute distance between unknown and all instances
 - Compare distances
 - Problematic for large data sets

- Alternative:
 - Use binary search to reduce to $O(\log n)$
Efficient Implementation: K-D Trees

- Divide instances into sets based on features
 - Binary branching: E.g. > value
 - 2^d leaves with d split path = n
 - $d = O(\log n)$
- To split cases into sets,
 - If there is one element in the set, stop
 - Otherwise pick a feature to split on
 - Find average position of two middle objects on that dimension
 - Split remaining objects based on average position
 - Recursively split subsets
K-D Trees: Classification

- If $R > 0.825$, then Yes.
- If $L > 17.5$, then No.
- If $L > 9$, then Yes.
- If $R > 0.6$, then No.
- If $R > 0.75$, then Yes.
- If $R > 1.025$, then No.
- If $R > 1.175$, then Yes.

- Poor
- Good
- Good
- Poor
- Good
- Good
- Poor
- Good
Efficient Implementation: Parallel Hardware

• Classification cost:
 • # distance computations
 • Const time if O(n) processors

• Cost of finding closest
 • Compute pairwise minimum, successively
 • O(log n) time