LING572 Hw4 (kNN) Due: 11pm on Feb 1, 2017

The example files are under dropbox/16-17/572/hw4/examples/.

Q1 (40 points): Write a script, **build_kNN.sh**, that implements the kNN algorithm. It classifies a test instance x by letting the k nearest neighbors of x vote.

- The learner should treat features as real-valued.
- Use majority vote; that is, each of the k nearest neighbors has one vote.
- The format is: build_kNN.sh training_data test_data k_val similarity_func sys_output > acc_file
- training_data and test_data are the vector files in the text format (cf. train.vectors.txt).
- k_v is the value of k; i.e., the number of nearest neighbors chosen for classification.
- similarity_func is the id of the similarity function. If the variable is 1, use Euclidean distance. If the value is 2, use Cosine function. Notice that Euclidean distance is a dissimilarity measure; that is, the longer the distance between two instances is, the more dissimilar (i.e., the less similar) the instances are.
- sys_output and acc_file have the same format as the one specified in Hw3.

Q2 (15 points): Run build_kNN.sh with train.vectors.txt as the training data and test.vectors.txt as the test data. Fill out Table 1 with different values of k and similarity function.

k	Euclidean distance	Cosine function
1		
5		
10		

Table 1: (Q2) Test accuracy using **real-valued** features

Q3 (45 points): Write a script, rank_feat_by_chi_square.sh, that ranks features by χ^2 scores.

- The format for command line is: cat input_file | rank_feat_by_chi_square.sh > output_file
- input_file is a feature vector file in the text format (e.g., train.vectors.txt).
- The output_file has the format "featName score docFreq". The score is the chi-square score for the feature; docFreq is the number of documents that the feature occurs in. The lines are sorted by χ^2 scores in descending order.
- For χ^2 calculation, treat each feature as binary; that is, suppose the input_file has a_i instances with class label c_i . Out of the a_i instances, b_i of them contain the feature f_k , then the corresonding contingency table for feature f_k is shown in Table 2.

• Run "cat train.vectors.txt | rank_feat_by_chi_square.sh > feat_list" and submit feat_list.

	c_1	c_2	c_3	
\bar{f}_k	$a_1 - b_1$	$a_2 - b_2$	$a_3 - b_3$	
f_k	b_1	b_2	b_3	

Table 2: (Q3) A contingency table for feature f_k

Submission: Submit a tar file via CollectIt. The tar file should include the following.

- In your note file hw4-notes.*, include your answers to the questions, and any notes that you want the TA to read.
- Shell scripts for Q1 and Q3, and related source and binary code.
- feat_list created in Q3.