LING572 Hw6: Beam search Due: 11pm on Feb 15, 2017

The example files are under /dropbox/16-17/572/hw6/examples/.

Q1 (75 points): Write a script, beamsearch_maxent.sh, that implements the beam search for POS tagging.

- The format is: beamsearch_maxent.sh test_data boundary_file model_file sys_output beam_size topN topK
- test_data has the following format (e.g., ex/test.txt): "instanceName goldClass f1 v1 f2 v2 ...", where an instance corresponds to a word and goldClass is the word's POS tag according to the gold standard. Note this format is slightly different from the format used in the previous assignments, which is "goldClass f1:v1 f2:v2 ...".
- boundary_file: the format of boundary_file is one number per line, which is the length of a sentence (e.g., **ex/boundary.txt**); for instance, if the first line is 46, it means the first sentence in test_data has 46 words.
- model_file is a MaxEnt model in text format (e.g., **m1.txt**).
- sys_output (e.g., ex/sys) has the following format: "instanceName goldClass sysClass prob", where *instanceName* and *goldClass* are copied from the test_data, *sysClass* is the tag y for the word x according to the best tag sequence found by the beam search, and *prob* is P(y | x). Note *prob* is NOT the probability of the whole tag sequence given the word sentence. It is the probability of the tag y given the word x.
- topN: When expanding a node in the beam search tree, choose only the topN POS tags for the given word based on $P(y \mid x)$.
- beam_size is the max gap between the lg-prob of the best path and the lg-prob of kept path: that is, a kept path should satisfy $lg(prob) + beam_size \ge lg(max_prob)$, where max_prob is the prob of the best path for the current position. lg is base-10 log.
- topK is the max number of paths kept alive at each position after pruning.

Note:

- A *path* in the beam search is the path from the root to a node in the beam search tree. And for more info about how beam search works and the meaning of beam_size, topN and topK, see the hw7 slides.
- Remember that the feature vectors in the test_data do not include features $t_{i-1}=tag_{i-1}$ (e.g., **prevT=NN**) and t_{i-2} $t_{i-1}=tag_{i-2}+tag_{i-1}$ (e.g., **prevTwoTags=JJ+NN**), because the tags of the previous words are not available for the test data before the decoding starts. You need to add those features to the feature vectors before calling the model to classify the current instance based on the current path.

- For instance, suppose the current instance is "instanceName goldTag f1 v1 f2 v2 ...", and in the current path the system tags the previous word as NN and the word before the previous word as JJ. You need to add "prevT=NN 1" and "prevTwoTags=JJ+NN 1" to the feature vector in order to determine the top tags of the current instance according to the current path.
- When you add these two types of features, only add the ones that appear in the model file. If a feature (e.g., prevTwoTags=NN+RB) does not appear in the model file, that means that the tag bigram does not appear in the training data. In that case, do not add the feature to the feature vector, as the model does not contain the weights for the corresponding feature functions. Another way to look at this is that if a (feature, class) pair does not appear in the model file, it means the weight of the feature function is zero.
- For your convenience, the list of these two types of features in the m1.txt is stored in feats_to_add. Your code should NOT read in a file like feats_to_add because this info should come from the model file. This file is there just to show you what these features look like.
- For the beam search, you need to add prevT=xx and prevTwoTags=xx+yy features on the fly. Some of those features might not appear in the model file. In that case, simply ignore those features as you won't be able to find the weights of the feature functions in the model file.

Q2 (20 points): Run beamsearch_maxent.sh with sec19_21.txt as the test data, m1.txt as model_file, sec19_21.boundary as the boundary file. Fill out Table 1.

- Please test your code thoroughly using ex/test.txt as the test file, ex/boundary.txt as boundary file, m1.txt as the model file. Then run the code on the real data set with the (0, 1, 1) setting, and record the time it takes. The running time for other settings could be much longer.
- As the experiments with the whole data set could take more than a few minutes, use condor submit. No need to submit your condor script.

beam_size	topN	topK	Test accuracy	Running time
0	1	1		
1	3	5		
2	5	10		
3	10	100		

 Table 1: Beam search results

Q3 (5 points): What conclusions can you draw from Table 1?

Submission: Submit a tar file via CollectIt. The tar file should include the following.

• In your note file hw6-notes.*, include your answers to Q2 and Q3, and any notes that you want the TA to read.

- The source code, binary code, and shell script for Q1.
- The sys_output file produced for the second row (when beam_size=1) in Table 1. Please call that file "sys_output.1-3-5".