Introduction to Classification

Fei Xia

Outline

• What is a classification problem?

• How to solve a classification problem?

Case study

What is a classification problem?

An example: text classification task

• Task: given an article, predict its category.

- Categories:
 - Politics, sports, entertainment, travel, ...
 - Spam or not spam

 What kind of information is useful to solve the problem?

Classification task

- Task:
 - C is a finite set of labels (a.k.a. categories, classes)
 - Given a x, decide its category $y \in C$.
- Instance: (x, y)
 - x: the thing to be labeled/classified
 - $y \in C.$
- Data: a set of instances
 - Labeled data: y is known
 - Unlabeled data: y is unknown
- Training data, test data

More examples

- Spam filtering
- Call center
- Sentiment detection
 - Good vs. Bad
 - 5-star system: 1, 2, 3, 4, 5

POS tagging

- Task: given a sentence, predict the tag of each word in the sentence.
- Is it a classification problem?
- Categories: noun, verb, adjective, ...
- What information is useful?
- What are the differences between the text classification task and POS tagging?
 - → Sequence labeling problem

Tokenization / Word segmentation

- Task: given a string, break it into words.
- Categories:
 - NB (no break), B (with break)
 - B (beginning), I (inside), E (end)
 - B1 (1st char), B2 (2nd char), B3 (3rd char), I, E, S
- Ex: c1 c2 || c3 c4 c5
 - c1/NB c2/B c3/NB c4/NB c5/B
 - c1/B c2/E c3/B c4/I c5/E
 - C1/B1 c2/E c3/B1 c4/B2 c5/E
- Relation to POS tagging?

How to solve a classification problem?

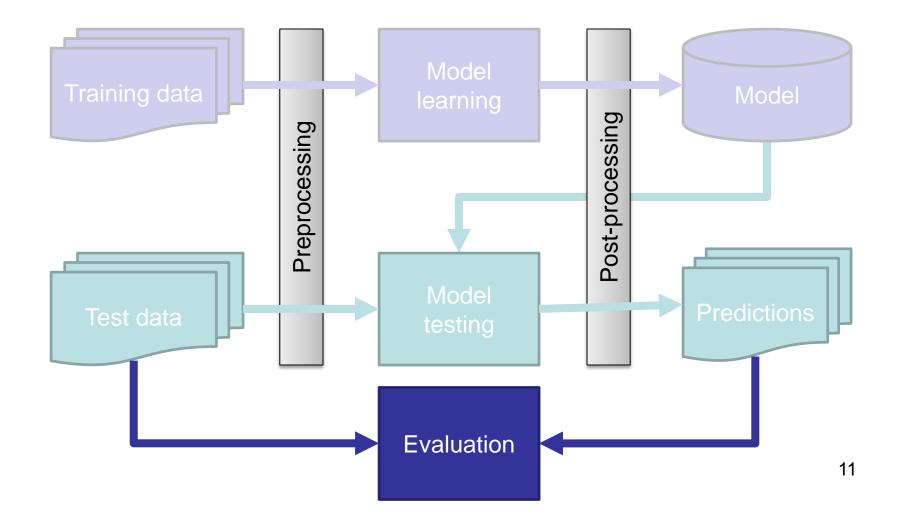
Two stages

• Training stage

– Learner: Training data → classifier

- Testing stage
 Decoder: Test data * classifier → classification results
- Others:
 - Preprocessing stage
 - Postprocessing stage
 - Evaluation

Training, test, and evaluation



How to represent x?

- The number of possible values for x could be infinite.
- Representing x as a feature vector: $x = \langle V_1, V_2, \dots, V_n \rangle$ $x = \langle f_1 = V_1, f_2 = V_2, \dots, f_n = V_n \rangle$
- What is a good feature?

An example

Task: text classification

Categories: sports, entertainment, living, politics,

- doc1 debate immigration Iraq ...
- doc2 suspension Dolphins receiver ...

doc3 song filmmakers charts rap

Training data: attribute-value table (Input to the training stage)

	f ₁	f ₂	•••	f _K	Target
X ₁	0	1	2.5	-1000	C ₂
x ₂	2.5	0	0	20	C ₁
X ₃					
x _n					

A classifier

- It is the output of the training stage.
- Narrow definition:

- f(x) = y, x is input, $y \in C$

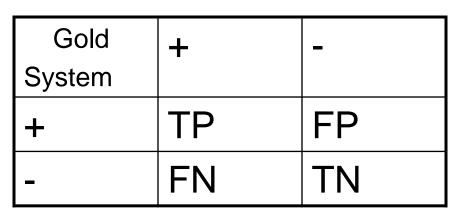
• More general definition: $- f(x) = \{(c_i, score_i)\}, c_i \in C.$

Test stage

- Input: test data and a classifier
- Output: a decision matrix.

	x ₁	x ₂	х ₃	
C ₁	0.1	0.4	0	••••
с ₂	0.9	0	0	
C ₃	0	0.1	0.4	
C ₄	0	0.5	0.6	

Evaluation



- Precision = TP/(TP+FP)
- Recall = TP/(TP+FN)
- F-score = 2PR/(P+R)
- Accuracy=(TP+TN)/(TP+TN+FP+FN)
- F-score or Accuracy?
- Why F-score?

An Example

Gold	+	-
System		
+	1	4
-	5	90

- Accuracy=91%
- Precision = 1/5
- Recall = 1/6
- F-score = $\frac{2*1/5*1/6}{1/5+1/6} = 2/11$

Steps for solving a classification task

- Prepare the data
 - Convert the task into a classification problem (optional)
 - Split data into training/dev/test
 - Convert the data into attribute-value table
- Training
- Testing
- Postprocessing (optional): convert the label sequence to something else
- Evaluation

Important subtasks (for you)

- Convert the problem into a classification task
- Converting the data into attribute-value table
 - Define feature types
 - Feature selection
 - Convert an instance into a feature vector
- Select a classification algorithm

Classification algorithms

- Decision Tree (DT)
- K nearest neighbor (kNN)
- Naïve Bayes (NB)
- Maximum Entropy (MaxEnt)*
- Support vector machine (SVM)**
- Conditional random field (CRF)**
- → Will be covered in LING572

More about attribute-value table

Attribute-value table

	f ₁	f ₂	•••	f _K	Target
Х ₁	0	1	2.5	-1000	C ₂
X ₂	2.5	0	0	20	C ₁
Х ₃					
x _n					

Binary features vs. real-valued features

- Some ML methods can use real-valued features, others cannot.
- Very often, we convert real-valued features into binary ones.
 - temp 69
 - Use one threshold: IsTempBelow60 0
 - Use multiple thresholds:
 - TempBelow0 0 TempBet0And50 0
 TempBet51And80 1 TempAbove81 0

Feature templates vs. Features

- A feature template: CurWord
- Corresponding features
 - CurWord=Mary
 - CurWord=the
 - CurWord=book
 - CurWord=buy
 - ...
- One feature template corresponds to many features

Feature templates vs features (cont)

curWord book

can be seen as a shorthand of

curWord=the 0 curWord=a 0 curWord=Mary 0 curWord=book 1 ...

An example

Mary will come tomorrow

	W_1	W ₀	W ₋₁ W ₀	W ₊₁	У
x1	<s></s>	Mary	<s> Mary</s>	will	PN
x2	Mary	will	Mary will	come	V
x3	will	come	will come	tomorrow	V

This can be seen as a shorthand of a much bigger table.

Attribute-value table

• It is a very sparse matrix.

- In practice, it is often represented in a dense format.
 - Ex: x1=<f1=0, f2=0, f3=1, f4=0, f5=1, f6=0> x1 f3 1 f5 1

Case study

Case study (I)

- The NE tagging task
 - Ex: John visited New York last Friday.
 - ➔ [person John] visited [location New York] [time last Friday]
- Is it a classification problem?
 - John/person-B visited/O New/location-B
 York/location-I last/time-B Friday/time-I
- What is x? What is y?
- What features could be useful?

Case study (II)

• Task: identify tables in a document

• What is x? What is y?

• What features are useful?

An example

	······································							
Features	System	Classification	Exact match		Partial match			
	span num	accuracy	prec	recall	fscore	prec	recall	fscore
Regex templates	269	N/A	68.40	41.16	51.40	99.26	59.73	74.58
F_1	130	81.50	68.46	19.91	30.85	97.69	28.41	44.02
F_2	405	93.28	58.27	52.80	55.40	95.56	86.58	90.85
$F_{1} + F_{3}$	180	80.26	61.67	24.83	35.40	81.11	32.66	46.57
$F_1 + F_2$	420	94.42	63.09	59.28	61.13	93.81	88.14	90.88
$F_2 + F_3$	339	92.68	75.81	57.49	65.39	93.21	70.69	80.40
$F_2 + F_4$	456	96.91	80.92	82.55	81.73	93.64	95.53	94.57
$F_1 + F_2 + F_3$	370	93.39	75.14	62.20	68.05	93.51	77.40	84.70
$F_1 + F_2 + F_4$	444	97.00	84.68	84.11	84.40	95.95	95.30	95.62
$F_2 + F_3 + F_4$	431	97.79	86.77	83.67	85.19	97.68	94.18	95.90
$F_1 + F_2 + F_3 + F_4$	431	98.00	90.02	86.80	88.38	97.22	93.74	95.44

Table 4: Performance on the development set (the span number in the gold standard is 447)

Table 5: Performance on the test set (the span number in the gold standard is 843)

Features	System	Classification	Exact match		Partial match			
	span num	accuracy	prec	recall	fscore	prec	\mathbf{recall}	fscore
Regex templates	587	N/A	74.95	52.19	61.54	98.64	68.68	80.98
F_2	719	92.45	57.02	48.64	52.50	94.02	80.19	86.56
$F_2 + F_4$	849	95.66	75.50	76.04	75.77	93.76	94.42	94.09
$F_2 + F_3 + F_4$	831	95.95	77.14	76.04	76.58	95.19	93.83	94.50
$F_1 + F_2 + F_3 + F_4$	830	96.83	82.29	81.02	81.65	96.51	95.02	95.76

However, when we ran the same algorithm on the IGT data, the accuracy was only 50.2%.¹⁰ In contrast, a heuristic approach that predicts the language ID according to the language names occurring in the document yields an accuracy of 65.6%.

Because the language name associated with an IGT instance almost always appears somewhere in the document, we propose to treat the language ID task as a reference resolution problem, where IGT instances are the *mentions* and the language names appearing in the document are the *entities*. A language identifier simply needs to link the mentions to the entities, allowing us to apply any good resolution algorithms such as (Soon et al., 2001; Ng, for ODIN's data: bootstrapping NLP tools (specifically taggers), and providing search over ODIN's data (as a kind of large-scale multi-lingual search).

3.1 IGT for bootstrapping NLP tools

Since the target line in IGT data does not come with annotations (e.g., POS tags), it is first necessary to enrich it. Once enriched, the data can be used as a bootstrap for tools such as taggers.

3.1.1 Enriching IGT

In a previous study (Xia and Lewis, 2007), we proposed a three-step process to enrich IGT data: (1) parse the English translation with an English parser

Case study (III)

- Task: Co-reference task
 - Ex: John called Mary on Monday. She was not at home. He left a message on her answer machine.
- What is x? What is y?

• What features are useful?

Summary

- Important concepts
 - Instance: (x,y)
 - Labeled vs. unlabeled data
 - Training data vs. test data
 - Training stage vs. test stage
 - Learner vs. decoder
 - Classifier
 - Accuracy vs. precision / recall / f-score

Summary (cont)

- Attribute-value table vs. decision matrix
- Feature vs. Feature template
- Binary features vs. real-valued features
- Number of features can be huge
- Representation of attribute-value table