Probability theory

Fei Xia

Basic concepts

- Possible outcomes, sample space, event, event space
- Random variable and random vector
- Conditional probability, joint probability, marginal probability

Random variable

- The outcome of an experiment need not be a number.
- We often want to represent outcomes as numbers.
- A random variable X is a function from the sample space to real numbers: $\Omega \rightarrow R$.
- Ex: the number of heads with three tosses: $X(H H T)=2, X(H T H)=2, X(H T T)=1, \ldots$

Two types of random variables

- Discrete: X takes on only a countable number of possible values.
- Ex: Toss a coin three times. X is the number of heads that are noted.
- Continuous: X takes on an uncountable number of possible values.
- Ex: X is the speed of a car (e.g., 56.5 mph)

Common distributions

- Discrete random variables:
- Uniform
- Bernoulli
- binomial
- multinomial
- Poisson
- Continuous random variables:
- Uniform
- Gaussian

Random vector

- Random vector is a finite-dimensional vector of random variables: $\mathrm{X}=\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right]$.
- $P(x)=P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, \ldots, x_{n}=x_{n}\right)$
- Ex: $\mathrm{P}\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$

Notation

- X, Y: random variables or random vectors.
- x, y : some values
- $P(X=x)$ is often written as $P(x)$
- $P(X=x \mid Y=y)$ is written as $P(x \mid y)$

Three types of probability

- Joint prob $P(x, y)$: the prob of $X=x$ and $Y=y$ happening together
- Conditional prob $P(x \mid y)$: the prob of $X=x$ given a specific value of $Y=y$
- Marginal prob $P(x)$: the prob of $X=x$ for all possible values of Y.

Chain rule: calc joint prob from marginal and conditional prob

$$
\begin{aligned}
& P(A, B)=P(A) * P(B \mid A)=P(B) * P(A \mid B) \\
& P\left(A_{1}, \ldots, A_{n}\right)=\prod_{i>=1} P\left(A_{i} \mid A_{1}, \ldots A_{i-1}\right)
\end{aligned}
$$

Calculating marginal probability from joint probability

$$
\begin{aligned}
& P(A)=\sum_{B} P(A, B) \\
& P\left(A_{1}\right)=\sum_{A_{2}, \ldots, A_{n}} P\left(A_{1}, \ldots, A_{n}\right)
\end{aligned}
$$

Bayes' rule

$$
P(B \mid A)=\frac{P(A, B)}{P(A)}=\frac{P(A \mid B) P(B)}{P(A)}
$$

$$
\begin{aligned}
y^{*} & =\underset{y}{\arg \max } P(y \mid x) \\
& =\underset{y}{\arg \max } \frac{P(x \mid y) P(y)}{P(x)} \\
& =\underset{y}{\arg \max } P(x \mid y) P(y)
\end{aligned}
$$

Independent random variables

- Two random variables X and Y are independent iff the value of X has no influence on the value of Y and vice versa.
- $P(X, Y)=P(X) P(Y)$
- $P(Y \mid X)=P(Y)$
- $P(X \mid Y)=P(X)$

Conditional independence

Once we know C, the value of A does not affect the value of B and vice versa.

- $P(A, B \mid C)=P(A \mid C) P(B \mid C)$
- $P(A \mid B, C)=P(A \mid C)$
- $P(B \mid A, C)=P(B \mid C)$

Independence and conditional independence

- If A and B are independent, are they conditional independent?
- Example:
- Burglar, Earthquake
- Alarm

Independence assumption

$$
\begin{aligned}
P\left(A_{1}, \ldots, A_{n}\right) & =\prod_{i>=1} P\left(A_{i} \mid A_{1}, \ldots A_{i-1}\right) \\
& \approx \prod_{i>1} P\left(A_{i} \mid A_{i-1}\right)
\end{aligned}
$$

An example

- $P\left(w_{1} w_{2} \ldots w_{n}\right)$
$=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1} w_{2}\right) * \ldots$ * $P\left(w_{n} \mid w_{1} \ldots, w_{n-1}\right)$
$\approx P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \ldots P\left(w_{n} \mid w_{n-1}\right)$
- Why do we make independence assumption which we know are not true?

Summary of elementary probability theory

- Basic concepts: sample space, event space, random variable, random vector
- Joint / conditional / marginal probability
- Independence and conditional independence
- Four common tricks:
- Chain rule
- Calculating marginal probability from joint probability
- Bayes' rule
- Independence assumption

