MaxEnt (II): modeling and decoding

LING 572 Fei Xia

Outline

- Overview
- The Maximum Entropy Principle
- Modeling**
- Decoding
- Training**
- Case study

Modeling

The Setting

- From the training data, collect (x, y) pairs:
 - $-x \in X$: the observed data
 - y ∈ Y: thing to be predicted (e.g., a class in a classification problem)
 - Ex: In a text classification task
 - x: a document
 - y: the category of the document

To estimate P(y | x)

The basic idea

- Goal: to estimate p(y | x)
- Choose p(x, y) with maximum entropy (or "uncertainty") subject to the constraints (or "evidence").

$$H(p) = -\sum_{(x,y)\in X\times Y} p(x,y)\log p(x,y)$$

The outline for modeling

• Feature function: $f_j(x, y)$

Calculating the expectation of a feature function

The forms of P(x, y) and P(y | x)

Feature function

The definition

A feature function is a binary-valued function on events:

$$f_j: X \times Y \rightarrow \{0,1\}$$

The j in f_j corresponds to a (feature, class) pair (t, c) $f_j(x, y) = 1$ iff t is present in x and y = c.

• Ex:

$$f_j(x, y) = \begin{cases} 1 & \text{if } y = Politics \& x contains "the"} \\ 0 & o.w. \end{cases}$$

The weights in NB

	f ₁	f_2	 $f_{\mathbf{k}}$
C ₁			
c_2			
•••			
C _i			

The weights in NB

	f ₁	f_2	•••	fj
C ₁	$P(f_1 c_1)$	$P(f_2 c_1)$		$P(f_j \mid c_1)$
c_2	$P(f_1 c_2)$	• • •		• • •
C _i	$P(f_1 c_i)$			$P(f_j \mid c_i)$

Each cell is a weight for a particular (class, feat) pair.

The matrix in MaxEnt

	t ₁	t ₂		t _k
C ₁	f ₁	f_2		f _k
C ₂	f _{k+1}	f _{k+2}		f _{2k}
			77000	
Ci	f _{k*(i-1)+1}			f _{k*i}

Each feature function f_i corresponds to a (feat, class) pair.

The weights in MaxEnt

	t ₁	t ₂	 t _k
C ₁	$\lambda_{_1}$	$\lambda_{_2}$	 λ_k
C ₂			
	_		
• • •	•••		1
C _i			λ_{ki}

Each feature function f_j has a weight λ_j .

Feature function summary

 A feature function in MaxEnt corresponds to a (feat, class) pair.

- The number of feature functions in MaxEnt is approximately |C| * |V|.
- A MaxEnt trainer is to learn the weights for the feature functions.

The outline for modeling

• Feature function: $f_j(x, y)$

Calculating the expectation of a feature function

The forms of P(x,y) and P(y | x)

The expected return

- Ex1:
 - Flip a coin
 - if it is a head, you will get 100 dollars
 - if it is a tail, you will lose 50 dollars
 - What is the expected return?

$$P(X=H) * 100 + P(X=T) * (-50)$$

- Ex2:
 - If it is a x_i, you will receive v_i dollars?
 - What is the expected return?

$$\sum_{i} P(X = x_i) v_i$$

Calculating the expectation of a function

Let P(X = x) be a distribution of a random variable X. Let f(x) be a function of x.

Let $E_p(f)$ be the expectation of f(x) based on P(x).

$$E_P(f) = \sum_i P(X = x_i) f(x_i)$$

$$\sum_i P(X = x_i) v_i$$

Empirical expectation

- Denoted as : $\widetilde{p}(x)$
- Ex1: Toss a coin four times and get H, T, H, and H.
- The average return: (100-50+100+100)/4 = 62.5
- Empirical distribution: $\widetilde{p}(X=H)=3/4$ $\widetilde{p}(X=T)=1/4$
- Empirical expectation:
 3/4 * 100 + 1/4 * (-50) = 62.5

Model expectation

 Ex1: Toss a coin four times and get H, T, H, and H.

- A model: p(x)
 - Assume a fair coin
 - P(X=H) = P(X=T) = 1/2
- Model expectation:

$$1/2 * 100 + 1/2 * (-50) = 25$$

Some notations

Training data:

Empirical distribution: $\tilde{p}(x, y)$

A model: p(x, y)

The jth feature function: $f_i(x, y)$

Empirical expectation of f_j $E_{\widetilde{p}}$

$$E_{\widetilde{p}}f_j = \sum_{(x,y)\in X\times Y} \widetilde{p}(x,y)f_j(x,y)$$

Model expectation of f_i

$$E_p f_j = \sum_{(x,y) \in X \times Y} p(x,y) f_j(x,y)$$

Empirical expectation**

$$E_{\widetilde{p}}f_j = \sum_{x \in X, y \in Y} \widetilde{p}(x, y) f_j(x, y)$$

$$= \sum_{x \in X, y \in Y} \widetilde{p}(x) \widetilde{p}(y \mid x) f_j(x, y) = \sum_{x \in X} \widetilde{p}(x) \sum_{y \in Y} \widetilde{p}(y \mid x) f_j(x, y)$$

$$= \sum_{x \in S} \widetilde{p}(x) \sum_{y \in Y} \widetilde{p}(y \mid x) f_j(x, y) = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} \widetilde{p}(y \mid x_i) f_j(x_i, y)$$

$$=\frac{1}{N}\sum_{i=1}^{N} f_{i}(x_{i}, y_{i})$$

An example

Training data:

$$E_{\widetilde{p}}f_j = \frac{1}{N}\sum_{i=1}^N f_j(x_i, y_i)$$

Raw counts $\sum_{i=1}^{N} f_j(x_i, y_i)$

	t1	t2	t3	t4
c1	1	1	2	1
c2	1	0	0	1
сЗ	1	0	1	0

An example

Training data:

$$E_{\tilde{p}}f_{j} = \frac{1}{N}\sum_{i=1}^{N} f_{j}(x_{i}, y_{i})$$

Empirical expectation

	t1	t2	t3	t4
c1	1/4	1/4	2/4	1/4
c2	1/4	0/4	0/4	1/4
сЗ	1/4	0/4	1/4	0/4

Calculating empirical expectation

Let N be the number of training instances

for each instance x in the training data let y be the true class label of x for each feature t in x empirical_expect [t] [y] += 1/N

Model expectation**

$$E_p f_j = \sum_{x \in X, y \in Y} p(x, y) f_j(x, y)$$

$$= \sum_{x \in X, y \in Y} p(x)p(y|x)f_j(x,y) \approx$$

$$\approx \sum_{x \in X, y \in Y} \widetilde{p}(x) p(y \mid x) f_j(x, y)$$

$$= \sum_{x \in X} \widetilde{p}(x) \sum_{y \in Y} p(y \mid x) f_j(x, y)$$

$$= \sum_{x \in S} \widetilde{p}(x) \sum_{y \in Y} p(y \mid x) f_j(x, y)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y | x_i) f_j(x_i, y)$$

An example

• Suppose $P(y | x_i) = 1/3$

"Raw" counts

Training data:

	Γ	<u> </u>	<u> </u>	1
	t1	t2	t3	t4
c1	3/3	1/3	2/3	2/3
c2	3/3	1/3	2/3	2/3
сЗ	3/3	1/3	2/3	2/3

$$E_{p}f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

An example

- Suppose $P(y \mid x_i) = 1/3$ Model expectation
- Training data:

	t1	t2	t3	t4
c1	3/12	1/12	2/12	2/12
c2	3/12	1/12	2/12	2/12
с3	3/12	1/12	2/12	2/12

$$E_{p}f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

Calculating model expectation

$$E_p f_j = \frac{1}{N} \sum_{i=1}^{N} \sum_{v \in Y} p(y \mid x_i) f_j(x_i, y)$$

Let N be the number of training instances

for each instance x in the training data calculate $P(y \mid x)$ for every $y \in Y$ for each feature t in x for each $y \in Y$ model_expect [t] [y] += 1/N * $P(y \mid x)_{27}$

Empirical expectation vs. model expectation

$$E_{\tilde{p}}f_{j} = \frac{1}{N}\sum_{i=1}^{N} f_{j}(x_{i}, y_{i})$$

$$E_{p} f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

Outline for modeling

• Feature function: $f_j(x, y)$

Calculating the expectation of a feature function

The forms of P(x, y) and P(y | x)**

Constraints

Model expectation = Empirical expectation

$$E_{p}f_{j} = E_{\tilde{p}}f_{j} = d_{j}$$

- Why impose such constraints?
 - The MaxEnt principle: Model what is known
 - To maximize the conditional likelihood: see Slides #24-28 in (Klein and Manning, 2003)

The conditional likelihood (**)

• Given the data (X,Y), the conditional likelihood is a function of the parameters λ

$$log P(Y|X,\lambda)$$

$$= log \prod_{(x,y)\in(X,Y)} P(y|x,\lambda)$$

$$= \sum_{(x,y)\in(X,Y)} log P(y|x,\lambda)$$

$$= \sum_{(x,y)\in(X,Y)} log \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{\sum_{y\in Y} e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}$$

$$= \sum_{(x,y)\in(X,Y)} (log e^{\sum_{j} \lambda_{j} f_{j}(x,y)} - log \sum_{y\in Y} e^{\sum_{j} \lambda_{j} f_{j}(x,y)})$$

31

The effect of adding constraints

Bring the distribution closer to the data

Bring the distribution further away from uniform

Lower the entropy

Raise the likelihood of data

Restating the problem

The task: find p* s.t.
$$p^* = \underset{p \in P}{\operatorname{arg max}} H(p)$$

where
$$P = \{ p \mid E_p f_j = E_{\tilde{p}} f_j, j = \{1,...,k\} \}$$

Objective function: H(p)

Constraints:
$$\{E_p f_j = E_{\tilde{p}} f_j = d_j, j = \{1,...,k\}\}$$

Using Lagrange multipliers (**)

$$\begin{aligned} & \text{Minimize A(p):} \qquad A(p) = -H(p) - \sum_{j=1}^k \lambda_j (E_p f_j - d_j) - \lambda_0 (\sum_{x,y} p(x,y) - 1) \\ & A'(p) = 0 \\ & \Rightarrow \frac{\delta(\sum_{x,y} p(x,y) \ln p(x,y) - \sum_{j=1}^k \lambda_j ((\sum_{x,y} p(x,y) f_j(x,y)) - d_j) - \lambda_0 (\sum_{x,y} p(x,y) - 1))}{\delta p(x,y)} = 0 \\ & \Rightarrow 1 + \ln p(x,y) - \sum_{j=1}^k \lambda_j f_j(x,y) - \lambda_0 = 0 \\ & \Rightarrow \ln p(x,y) = (\sum_{j=1}^k \lambda_j f_j(x,y)) + \lambda_0 - 1 \\ & \Rightarrow p(x,y) = e^{\sum_{j=1}^k \lambda_j f_j(x,y) + \lambda_0 - 1} = e^{\sum_{j=1}^k \lambda_j f_j(x,y) + \lambda_0 - 1} \\ & \Rightarrow p(x,y) = \frac{e^{\sum_{j=1}^k \lambda_j f_j(x,y)}}{2} \quad \text{where} \quad Z = e^{1 - \lambda_0} \end{aligned}$$

Questions

$$p^* = \mathop{\rm arg\,max}_{p \in P} H(p)$$
 where
$$P = \{p \mid E_p f_i = E_{\widetilde{p}} f_i, j = \{1, ..., k\}\}$$

- Is P empty?
- Does p* exist?
- Is p* unique?
- What is the form of p*?
- How to find p*?

What is the form of p*? (Ratnaparkhi, 1997)

$$P = \{ p \mid E_p f_j = E_{\tilde{p}} f_j, j = \{1,...,k\} \}$$

$$Q = \{ p \mid p(x, y) = \pi \prod_{j=1}^{k} \alpha_j^{f_j(x, y)}, \alpha_j > 0 \}$$

Theorem: if
$$p^* \in P \cap Q$$
 then $p^* = \underset{p \in P}{\operatorname{arg\,max}} H(p)$

Furthermore, p* is unique.

Two equivalent forms

$$p(x,y) = \pi \prod_{j=1}^k \alpha_j^{f_j(x,y)}$$

$$p(x, y) = \frac{e^{\sum_{j=1}^{k} \lambda_j f_j(x, y)}}{Z}$$

$$\pi = \frac{1}{Z} \quad \lambda_j = \ln \alpha_j$$

Modeling summary

Goal: find p* in P, which maximizes H(p).

$$P = \{ p \mid E_p f_j = E_{\tilde{p}} f_j, j = \{1, ..., k\} \}$$

It can be proved that, when p* exists

- it is unique
- it maximizes the conditional likelihood of the training data
- it is a model in Q, where

$$Q = \{ p \mid p(x) = \pi \prod_{j=1}^{k} \alpha_j^{f_j(x)}, \alpha_j > 0 \}$$

Outline

- Overview
- The Maximum Entropy Principle
- Modeling**
- Decoding
- Training**
- Case study: POS tagging

Decoding

Decoding

$$p(y \mid x) = \frac{e^{\sum_{j=1}^{k} \lambda_j f_j(x,y)}}{Z}$$

Z is the normalizer.

	t ₁	t ₂	 t _k
C ₁	$\lambda_{_1}$	$\lambda_{_2}$	 λ_k
C ₂			
C _i			λ_{ki}

The procedure for calculating P(y | x)

```
Z=0;
for each y ∈ Y
 sum = 0; // or sum = default_weight_for_class_y;
 for each feature t present in x
    sum += the weight for (t, y);
  result[y] = exp(sum);
 Z += result[y];
for each y ∈ Y
  P(y \mid x) = result[y] / Z;
```

MaxEnt summary so far

- Idea: choose the p* that maximizes entropy while satisfying all the constraints.
- p* is also the model within a model family that maximizes the conditional likelihood of the training data.
- MaxEnt handles overlapping features well.
- In general, MaxEnt achieves good performances on many NLP tasks.
- Next: Training: many methods (e.g., GIS, IIS, L-BFGS).