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The Setting

* From the training data, collect (x, y) pairs:
— X € X: the observed data

— Yy € Y: thing to be predicted (e.g., aclassin a
classification problem)

— EXx: In a text classification task
e X: a document
« y: the category of the document

* To estimate P(y | X)



The basic idea

Goal: to estimate p(y | X)

Choose p(X, y) with maximum entropy (or
“uncertainty”) subject to the constraints (or
“evidence”).

H(p)=- > p(x y)log p(x,y)

(X,y)eXxY



The outline for modeling

 Feature function: f;, (X, y)

« Calculating the expectation of a feature
function

* The forms of P(X, y) and P(y | x)



Feature function



The definition

« A feature function is a binary-valued function on events:

f.: XxY —>{01}

J

The j in f; corresponds to a (feature, class) pair (¢, c)
fi(x,y) = 1iff t is present in x and y = c.
* EX:

1 1if y=Politics& x contains "the"



The weights in NB




The weights in NB

f, f, e fj
C1 P(f Icy) P(f, |cy) P(f; | c,)
C, P(f; [cy)
o P(f, |c) P(f, | c)

Each cell is a weight for a particular (class, feat) pair.
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The matrix in MaxEnt

tl t2
C, f, f,
C, fisn fisn
Ci fieri-1)+1

fk*i

Each feature function f; corresponds to a (feat, class) pairr.
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The weights iIn MaxEnt

tl t2 tk
Cl )\1 >\2 )\k
C,
Ci Aki

Each feature function f; has a weight A..
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Feature function summary

+ A feature function in MaxEnt corresponds to a
(feat, class) pair.

« The number of feature functions in MaxEnt Is
approximately |C| * |V|.

« A MaxEnt trainer is to learn the weights for the
feature functions.
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The outline for modeling

 Feature function: f,(X,y)

« Calculating the expectation of a feature
function

* The forms of P(x,y) and P(y | x)
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The expected return

 EX1:
— Flip a coin
* if it Is a head, you will get 100 dollars
« if it Is a tail, you will lose 50 dollars
— What is the expected return?
P(X=H) * 100 + P(X=T) * (-50)

 EX2:
— If itis a x;, you will receive v; dollars?
— What is the expected return?

> P(X =) v,
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Calculating the expectation
of a function

Let P(X = x) be a distribution of a random variable X.
Let f(x) be a function of =x.
Let E,(f) be the expectation of f(z) based on P(x).

Ep(f) =) P(X = z;) f(x;)

> P(X = ;) v
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Empirical expectation
Denoted as : 5(X)
Ex1: Toss a coin four times and get H, T, H, and H.
The average return: (100-50+100+100)/4 =62.5

Empirical distribution: P(X =H) =3/4
B(X =T)=1/4
Empirical expectation:
%, * 100 + Y4 * (-50) = 62.5
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Model expectation

« Ex1: Toss a coin four times and get H, T, H,
and H.

« A model: p(Xx)
— Assume a fair coin
— P(X=H) = P(X=T) = 1/2

 Model expectation:
1/2 * 100 + 1/2 * (-50) = 25
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Some notations

Training data: S
Empirical distribution: 5(X, y)
A model. p(X, V)
The jt feature function: f.(X,¥)
Empirical expectation of T Esf, = Z p(X,Y) f,(Xy)
(X,y)eXxY
Model expectation of E,fi= > p(x,y)f(x,y)

(X,y)eXxY
19



Empirical expectation**

> p(x,y)f (xy)

XxeX,yeY

= > PPN (xy) =X B By X f;(x,y)
xeX,yeY xe X yeY

= 2 P00 BT () _%izp(ymf (x.,Y)

SORACHY
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UI

raining data:

x1 cl
X2 c2
X3 cl
x4 c3

_ 1
N

t1 t2 t3

{1 t4
t3 t4
1 t3

N

Z f, (%, ¥i)

An example

N

Raw counts  ° f;(zs, y;)

1=1

t1 |[t2 [(t3 |t4
cl|l 1 2 1
c2 |1 0 1
c3 |1 0




An example

* Training data:

'OI

x1 cl tl t2 t3

X2 c2 tl1 t4
X3 cl t3t4
x4 c3 tlt3

1 N
NZ f. (Xl’yl

Empirical expectation

tl

t2

t3

t4

cl

1/4

1/4

2/4

1/4

c2

1/4

0/4

0/4

1/4

c3

1/4

0/4

1/4

0/4
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Calculating empirical expectation

Let N be the number of training instances

for each instance x in the training data
let y be the true class label of x
for each feature t in x
empirical _expect [t] [y] += 1/N
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Model expectation**

> p(x,y)f (xy)

xeX,yeY

= 2 PpOOpYIOfiY) = SR pYIX) (X, Y)
X,yeY

xeX,yeY xeX ,ye

=2, 0002 p(y [ f(6y) = P)> ply|x)f(xy)
xeX yeY xeS

yeY

—Z,Z,IO(YIX)f (X, ¥)

1=1 yeY
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An example

» Suppose P(y | x) = 1/3

“Raw’” counts

* Training data:

171t 2 13 e |8«
NG 1 t4 cl |(3/3 [1/3 [2/3 [2/3
X3 t4 c2 |3/3 [1/3 [2/3 |2/3
x4 t1 13 c3 |(3/3 [1/3 [2/3 [2/3
ZZP(Y\X)f(X.,Y) i

1=l yeY



An example

» Suppose P(y | x) = 1/3

Model expectation

* Training data: 1 2 13 lu
X1 1 t2 t3 |1 |3/12 (w12 |2/12 |2/12
X2 tl t4
3 4 c2 |3/12 [1/12 |2/12 |2/12
X4 t1 t3 c3 |3/12 |1/12 |2/12 |2/12

ZZp(y\x)f(X.,y) .

1=l yeY



Calculating model expectation

ZZp(yIX)f(x y)

i=1 yeY

Let N be the number of training instances

for each instance x in the training data
calculate P(y | x) for everyy € Y

for each feature t in x
foreachy eY

model_expect [t] [y] += 1/N * P(y | x) _



Empirical expectation vs.
model expectation

f (XI’ y|

WMZ

f L I —
_Z,Z, pCy | %) £ (x,[Y)
N =1 yeY



Outline for modeling

 Feature function: f;, (X, y)

« Calculating the expectation of a feature
function

* The forms of P(x, y) and P(y | x)**
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Constraints

* Model expectation = Empirical expectation

* Why impose such constraints?
— The MaxEnt principle: Model what is known

— To maximize the conditional likelihood: see Slides
#24-28 in (Klein and Manning, 2003)
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The conditional likelihood (**)

* Given the data (X,Y), the conditional
likelihood Is a function of the parameters A

logP(Y| X, \)
=log ][z ex,y) P(ylz, A)
= Z(gjjy)E(X?Y) logP(y|x, A)

ezj Ajfi(z,y)
— Z(m,y)E(X,Y) log Zj Xjfj(z,y)
yey c
Aj fi(z, g fi(w,y)
— Z(m,y)E(X,Y) (log 623 ) o lOg ZyEY 623 (7 )

— LI ) 31



The effect of adding constraints

* Bring the distribution closer to the data

* Bring the distribution further away from
uniform

* Lower the entropy

 Raise the likelihood of data
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Restating the problem

The task: find p*s.t.  p*=argmaxH(p)

peP

where  p={p|E f =E;f,j={L..k}}

p !

Objective function: H(p)

Constraints: {E f, =E;f, =d;, J={1...,k}}
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Using Lagrange multipliers (**)

Minimize A(p): A(p) =—H(p) __Zk:/lj (E,f,—d,)—4 (Z p(Xx,y)-1)

A(p)=0

52, p(x.y)In p(x, y)—_Zk)ﬁ,- (P ) f5(x y))=d)) =2, (2 p(x, y) 1))
T ay) -

=1+1In p(x, y)—Zk;‘/%j f,(x,y)-4,=0

—

=10 P06 Y) = (4, T, 06 )+ Ay -1

k K
YA (x,y)+2-1 YA fi(x,y)+4-1

= p(x,y)=e" =e"
i’ljfi(xvY)
e 1L
= p(X,y) = where Z=¢""

34



Questions

p*=argmaxH(p)

peP

where P={p|E f, =E;f,, J={L....k}}

* IS P empty?

* Does p* exist?

* IS p* unique?

* What is the form of p*?
* How to find p*?
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What is the form of p*?
(Ratnaparkhi, 1997)

P :{p‘ Epr = Eﬁ fJ, J :{111k}}

K
Q={p|p(x,y) :ﬂHaj fj(x’y)105j > 0}
j=1

Theorem: if pP*<PnQ then p*=argmaxH(p)
peP

Furthermore, p* Is unique.

36



Two equivalent forms

K
p(x,y)=n] Jer;""”
j=1
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Modeling summary

Goal: find p* in P, which maximizes H(p).
P={plE f, =E;f,,j={L...k}}

It can be proved that, when p* exists
- Itis unique o -
- It maximizes the conditional likelihood of the training data
- it is a model in Q, where

k
Q={p|p()=r[]e,"", e, >0}
j=1
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Decoding

40



Decoding

> At (Xy)
e’=
p(y ‘ X) — Z is the normalizer.
VA
4 L L

C, A, A, A

C>

Ci )\kz
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The procedure for calculating P(y | x)

Z=0;
foreachy Y
sum = 0; // or sum = default_weight_for _class v,
for each feature t present in X
sum += the weight for (t, y);
result]y] = exp(sum);
Z +=result[y];

foreachy €Y
P(y | X) = result]y] / Z;
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MaxEnt summary so far

Idea: choose the p* that maximizes entropy while
satisfying all the constraints.

p* Is also the model within a model family that maximizes
the conditional likelihood of the training data.

MaxEnt handles overlapping features well.

In general, MaxEnt achieves good performances on
many NLP tasks.

Next: Training: many methods (e.g., GIS, IS, L-BFGS).
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