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Outline

• Overview

• The Maximum Entropy Principle

• Modeling**

• Decoding

• Training**

• Smoothing**

• Case study: POS tagging: covered in ling570 already
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Training
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Algorithms

• Generalized Iterative Scaling (GIS): 

(Darroch and Ratcliff, 1972)

• Improved Iterative Scaling (IIS): (Della 

Pietra et al., 1995)

• L-BFGS: 

• … 4



GIS: setup**

Requirements for running GIS:

• If that’s not the case, 
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Add a “correction” feature function fk+1:
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GIS algorithm

• Compute empirical expectation: 

• Initialize           to 0 or some other value 

• Repeat until convergence for each j:

– Calculate p(y | x) under the current model:

– Calculate model expectation under current model:

– Update model parameters:
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“Until convergence”
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Calculating LL(p)

LL = 0;

for each training instance x 

let y be the true label of x

prob = p(y | x);     # p is the current model

LL += log (prob);
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Properties of GIS

• L(p(n+1)) >= L(p(n))  

• The sequence is guaranteed to converge to p*.

• The converge can be very slow.

• The running time of each iteration is O(NPA):

– N: the training set size

– P: the number of classes

– A: the average number of features that are active for 

an instance (x, y).
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L-BFGS

• BFGS stands for Broyden-Fletcher-Goldfarb-Shanno: 

authors of four single-authored papers published in 

1970.

• L-BFGS: Limited-memory BFGS, proposed in 1980s.

• It is a quasi-Newton method for unconstrained 

optimization. **

• It is especially efficient on problems involving a large 

number of variables.
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L-BFGS (cont)**

• References:

– J. Nocedal. Updating Quasi-Newton Matrices with Limited 

Storage (1980), Mathematics of Computation 35, pp. 773-782. 

– D.C. Liu and J. Nocedal. On the Limited Memory Method for 

Large Scale Optimization (1989), Mathematical Programming B, 

45, 3, pp. 503-528. 

• Implementation: 

– Fortune:   http://www.ece.northwestern.edu/~nocedal/lbfgs.html

– C:  http://www.chokkan.org/software/liblbfgs/index.html

– Perl:  http://search.cpan.org/~laye/Algorithm-LBFGS-

0.12/lib/Algorithm/LBFGS.pm
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Outline

• Overview

• The Maximum Entropy Principle

• Modeling**

• Decoding

• Training**

• Smoothing**

• Case study: POS tagging 12



Smoothing

Many slides come from

(Klein and Manning, 2003)
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Papers

• (Klein and Manning, 2003)

• Chen and Rosenfeld (1999):  A Gaussian 

Prior for Smoothing Maximum Entropy 

Models, CMU Technical report (CMU-CS-

99-108).
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Smoothing

• MaxEnt models for NLP tasks can have 

millions of features.

• Overfitting is a problem.

• Feature weights can be infinite, and the 

iterative trainers can take a long time to 

reach those values. 
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An example
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Approaches

• Early stopping

• Feature selection

• Regularization**
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Early Stopping

• Prior use of early stopping

– Decision tree heuristics

• Similarly here

– Stop training after a few iterations

– The values of parameters will be finite. 

– Commonly used in early MaxEnt work
19



Feature selection

• Methods:

– Using predefined functions: e.g., Dropping features 

with low counts 

– Wrapping approach: Feature selection during training 

• It is equivalent to setting the removed features’ weights 

to be zero.

• It reduces model size, but the performance could suffer.
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Regularization**

• In statistics and machine learning, regularization is any 

method of preventing overfitting of data by a model.

• Typical examples of regularization in statistical machine 

learning include ridge regression, lasso, and L2-norm in 

support vector machines.

• In this case, we change the objective function:
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Posterior             Prior            Likelihood



MAP estimate**

• ML: Maximum likelihood

• MAP: Maximum A Posterior
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The prior**

• Uniform distribution, Exponential prior, …

• Gaussian prior:
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• Maximize P(Y|X, ¸):

• Maximize P(Y, ¸ | X):

• In practice: 
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L1 or L2 regulation** 
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Orthant-Wise limited-memory Quasi-Newton (OW-LQN) 

method (Andrew and Gao, 2007)

L-BFGS method (Nocedal, 1980)



Example: POS tagging
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Benefits of smoothing**

• Softens distributions

• Pushes weights onto more explanatory features

• Allows many features to be used safely

• Can speed up convergence
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Summary: training and smoothing

• Training: many methods (e.g., GIS, IIS, L-BFGS).

• Smoothing:
– Early stopping

– Feature selection

– Regularization

• Regularization:
– Changing the objective function by adding the prior

– A common prior: Gaussian distribution

– Maximizing posterior is no longer the same as maximizing 
entropy.
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Outline

• Overview

• The Maximum Entropy Principle

• Modeling**:

• Decoding:

• Training**:  compare empirical expectation and model 

expectation and modify the weights accordingly

• Smoothing**: change the objective function

• Case study: POS tagging
29
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Additional slides
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The “correction” feature

function for GIS
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The weight of fk+1 will not affect P(y | x).

Therefore, there is no need to estimate the weight. 



Ex4 (cont)

??
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Training
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IIS algorithm

• Compute dj, j=1, …, k+1 and

• Initialize            (any values, e.g., 0) 

• Repeat until converge

– For each j

• Let                 be the solution to  

• Update
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Calculating 
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Feature selection
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Feature selection

• Throw in many features and let the 
machine select the weights

– Manually specify feature templates

• Problem: too many features

• An alternative: greedy algorithm

– Start with an empty set S

– Add a feature at each iteration
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Two scenarios

Scenario #1: no feature selection during training

• Define features templates

• Create the feature set

• Determine the optimum feature weights via GIS or IIS

Scenario #2: with feature selection during training

• Define feature templates

• Create a candidate feature set F

• At every iteration, choose the feature from F (with max 
gain) and determine its weight (or choose top-n features 
and their weights).
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Notation

The gain in the log-likelihood of the training data:

After adding a feature:

With the feature set S:
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Feature selection algorithm

(Berger et al., 1996)

• Start with S being empty; thus ps is uniform.

• Repeat until the gain is small enough

– For each candidate feature f

• Computer the model                  using IIS

• Calculate the log-likelihood gain

– Choose the feature with maximal gain, and add it to 

S

fSp 

 Problem: too expensive
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Approximating gains

(Berger et. al., 1996) 

• Instead of recalculating all the weights, 

calculate only the weight of the new 

feature.
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