MaxEnt (IV):
case study and beam search



Case study



POS tagging
(Ratnaparkhi, 1996)

* Notation variation:
— fi(x, y): x: input, y: output
— fi(h, t): h: history, t: tag for the word

* History:
h {WI ’WI 1’W W W|+2’ti—1’ti—2}

1+11
* Training data:
— Treat a sentence as a set of (h, t) pairs.
— How many pairs are there for a sentence?



Using a MaxEnt Model

* Modeling:

* Training:
— Define features templates
— Create the feature set

— Determine the optimum feature weights via GIS or
I

* Decoding:



Modeling




Training step 1:
define feature templates

Condition Fentures

uy 18 not rare | wy; = X =T

wy i8 TArE X is prefix of w;, |X] < 4 Lt =T
X i1s suffix of wy, |X] < 4 =T
w; contains number et =T
w; contains uppercase character & f; =1
w; contains hyphen b, =T

Y owy fjim1 = X ti=T
fjmiticg = XY b =T
-1 =% kti=T
-2 =% kti=T
Wigp1 = A it =T
Wigs = X L4, =T

History h, Tagt,



Step 2: Create feature set

Hord: the ateriez| about | well-heslad communities and developers
Tag: DT NHS IN JJ HHS o NNS
Position: | 1 b 3 4 B & T

tr; = ebout Li;=1IN

i1 = 8torias Li,=1IN

-+ = the ki, =IN

Wiy, = wall-haaled & {; = IN
4o = communitieas & = IN
f;_1 = HNS Li,=1IN
f;_ot;i_y = DT NHS ki, =1IN

=>» Collect all the features from the training data
=>» Throw away features that appear less than 10 times



The thresholds

e Raw words: words that occur <5 in the
training data.

* Features (not feature functions):
— All curWord features will be kept.

— For the rest of features, keep them if they occur
>= 10 in the training data.



Step 3: determine the weights of feature
functions

* GIS

* Training time:
— Each iteration: O(NTA):
* N: the training set size
e T: the number of allowable tags
e A: average number of features that are active for a (h,
t).

— About 24 hours on a 1996 machine (an IBM
RS/6000 Model 380)



Beam search



Why do we need beam search?

* Features refer to tags of previous words,
which are not available for the TEST data.

* Knowing only the best tag of the previous
word is not good enough.

* So let’s keep multiple tag sequences available
during the decoding.



Beam search

time flies like an  arrow
SZ,l
S'1,1 / v
N
\ P
S2,2
/v, Vv
V
—
SZ,3
51, | Y
" N
@/ \ P
S2,4
V — TV
\

P



Beam Search

* [ntuition:
— Breadth-first search explores all paths
— Lots of paths are (pretty obviously) bad
— Why explore bad paths?
— Restrict to (apparently best) paths

* Approach:
— Perform breadth-first search, but
— Retain only top k ‘best’ paths thus far



Parameters:

Beam search
topN, topK, beam_size

(1) Get topN tags for w; and form nodes s ;

(2) For =2 to n (n is the sentence length)
For each surviving node s;_1 ;
form the vector for w;

get

toﬁNl tags for w; and

form new nodes

Prune nodes at position ¢

(3) Pick the node at position n with highest prob



Pruning at Position |

Each node at Position ¢ should store a tag for w; and a prob,
where the prob is [[,_, P(tx|hk).

Let max_prob be the highest prob among the nodes at Position ¢

For each node s; ; at Position ¢
Let prob; ; be the probability stored at the node

keep the node iff prob; ; is among the toéK lof the nodes
and lg(prob; ;) +|beam_size|> lg(max_prob)

15



Decoding (cont)

* Tags for words:
— Known words: use tag dictionary
— Unknown words: try all possible tags

e Ex: “time flies like an arrow”

* Running time: O(NTAB)
— N: sentence length
— B: beam size
— T: tagset size
— A: average number of features that are active for a given event



POS Tagging

Overall accuracy: 96.3+%
Unseen word accuracy: 86.2%
Comparable to HMM tagging accuracy or TBL
Provides
— Probabilistic framework

— Better able to model different info sources

Topline accuracy 96-97%
— Consistency issues



Experiment results

MF Lag 0 T.66
Markov 1-gram B 6. 74
Markov 3-gram W 3.7

Markov 3-gram B 164
Decision tree M 1.5
Transformation B 1.3
Maxent R 3.37
Maxent O 311 £407

18



Beam Search

* Beam search decoding:
— Variant of breadth first search
— At each layer, keep only top sequences

 Advantages:
— Efficient in practice: beam 3-5 near optimal
* Empirically, beam 5-10% of search space; prunes 90-95%
— Simple to implement
e Just extensions + sorting, no dynamic programming

 Disadvantage: Not guaranteed optimal (or complete)



MaxEnt POS Tagging

* Part of speech tagging by classification:
— Feature design
* word and tag context features
» orthographic features for rare words

* Sequence classification problems:
— Tag features depend on prior classification

 Beam search decoding
— Efficient, but inexact
* Near optimal in practice



Comparison with other learners

 HMM: MaxEnt can use more context
 DT: MaxEnt does not split data

* Naive Bayes: MaxEnt does not assume that
features are independent given the class.



