MaxEnt (IV): case study and beam search

LING 572 Fei Xia

Case study

POS tagging (Ratnaparkhi, 1996)

- Notation variation:
 - f_i(x, y): x: input, y: output
 - $f_i(h, t)$: h: history, t: tag for the word
- History:

$$h_{i} = \{w_{i}, w_{i-1}, w_{i-2}, w_{i+1}, w_{i+2}, t_{i-1}, t_{i-2}\}$$

- Training data:
 - Treat a sentence as a set of (h_i, t_i) pairs.
 - How many pairs are there for a sentence?

Using a MaxEnt Model

- Modeling:
- Training:
 - Define features templates
 - Create the feature set
 - Determine the optimum feature weights via GIS or IIS
- Decoding:

Modeling

 $P(t_1,...,t_n | w_1,...,w_n)$

$$=\prod_{i=1}^{n} p(t_i \mid w_1^n, t_1^{i-1})$$

$$\approx \prod_{i=1}^{n} p(t_i \mid h_i)$$

$$p(t \mid h) = \frac{p(h,t)}{\sum_{t' \in T} p(h,t')}$$

Training step 1: define feature templates

Condition	Features	
w_i is not rare	$w_i = X$	$\& t_i = T$
w_i is rare	X is prefix of w_i , $ X \le 4$	$\& t_i = T$
	X is suffix of w_i , $ X \leq 4$	$\& t_i = T$
	w_i contains number	$\& t_i = T$
	w_i contains uppercase character	$\& t_i = T$
	w_i contains hyphen	$\& t_i = T$
$\forall w_i$	$t_{i-1} = X$	$\& t_i = T$
	$t_{i-2}t_{i-1} = XY$	$\& t_i = T$
	$w_{i-1} = X$	$\& t_i = T$
	$w_{i-2} = X$	$\& t_i = T$
	$w_{i+1} = X$	$\& t_i = T$
	$w_{i+2} = X$	$\& t_i = T$
	▲	A

History h_i

Step 2: Create feature set

→Collect all the features from the training data
→Throw away features that appear less than 10 times

The thresholds

Raw words: words that occur < 5 in the training data.

- Features (not feature functions):
 - All curWord features will be kept.
 - For the rest of features, keep them if they occur
 >= 10 in the training data.

Step 3: determine the weights of feature functions

- GIS
- Training time:
 - Each iteration: O(NTA):
 - N: the training set size
 - T: the number of allowable tags
 - A: average number of features that are active for a (h, t).
 - About 24 hours on a 1996 machine (an IBM RS/6000 Model 380)

Beam search

Why do we need beam search?

• Features refer to tags of previous words, which are not available for the TEST data.

 Knowing only the best tag of the previous word is not good enough.

• So let's keep multiple tag sequences available during the decoding.

Beam search

Beam Search

- Intuition:
 - Breadth-first search explores all paths
 - Lots of paths are (pretty obviously) bad
 - Why explore bad paths?
 - Restrict to (apparently best) paths
- Approach:
 - Perform breadth-first search, but
 - Retain only top k 'best' paths thus far

Beam search

Parameters: topN, topK, beam_size

(1) Get topN tags for w_1 and form nodes $s_{1,j}$

(2) For i=2 to n (n is the sentence length) For each surviving node $s_{i-1,j}$ form the vector for w_i get topN tags for w_i and form new nodes Prune nodes at position i

(3) Pick the node at position n with highest prob

Pruning at Position i

Each node at Position *i* should store a tag for w_i and a prob, where the prob is $\prod_{k=1}^{i} P(t_k | h_k)$.

Let max_prob be the highest prob among the nodes at Position i

For each node $s_{i,j}$ at Position iLet $prob_{i,j}$ be the probability stored at the node keep the node iff $prob_{i,j}$ is among the topK of the nodes and $lg(prob_{i,j}) + \text{beam_size} \ge lg(max_prob)$

Decoding (cont)

- Tags for words:
 - Known words: use tag dictionary
 - Unknown words: try all possible tags
- Ex: "time flies like an arrow"
- Running time: O(NTAB)
 - N: sentence length
 - B: beam size
 - T: tagset size
 - A: average number of features that are active for a given event

POS Tagging

- Overall accuracy: 96.3+%
- Unseen word accuracy: 86.2%
- Comparable to HMM tagging accuracy or TBL
- Provides
 - Probabilistic framework
 - Better able to model different info sources
- Topline accuracy 96-97%
 - Consistency issues

Experiment results

MF tag	0	7.66	
Markov 1-gram	в	6.74	
Markov 3-gram	w	3.7	
Markov 3-gram	в	3.64	
Decision tree	м	3.5	
Transformation	в	3.39	
Maxent	R	3.37	
Maxent	0	3.11	$\pm.07$
Multi-tagger Voting	В	2.84	$\pm.03$

Beam Search

- Beam search decoding:
 - Variant of breadth first search
 - At each layer, keep only top sequences
- Advantages:
 - Efficient in practice: beam 3-5 near optimal
 - Empirically, beam 5-10% of search space; prunes 90-95%
 - Simple to implement
 - Just extensions + sorting, no dynamic programming
- Disadvantage: Not guaranteed optimal (or complete)

MaxEnt POS Tagging

- Part of speech tagging by classification:
 - Feature design
 - word and tag context features
 - orthographic features for rare words
- Sequence classification problems:
 - Tag features depend on prior classification
- Beam search decoding
 - Efficient, but inexact
 - Near optimal in practice

Comparison with other learners

• HMM: MaxEnt can use more context

• DT: MaxEnt does not split data

• Naïve Bayes: MaxEnt does not assume that features are independent given the class.