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Highlights
CRF is a form of undirected graphical model
Proposed by Lafferty, McCallum and Pereira in 2001
Used in many NLP tasks: e.g., Named-entity detection

Types:

— Linear-chain CRF
— Skip-chain CRF
— General CRF



Outline

* Graphical models

e Linear-chain CRF

e Skip-chain CRF



Graphical models



Graphical model

* A graphical model is a probabilistic model for which
a graph denotes the conditional independence
structure between random variables:

— Nodes: random variables

— Edges: dependency relation between random variables

* Types of graphical models:

— Bayesian network: directed acyclic graph (DAG)
— Markov random fields: undirected graph



Bayesian network



Bayesian network

* Graph: directed acyclic graph (DAG)
— Nodes: random variables
— Edges: conditional dependencies

— Each node X is associated with a probability
function P(X | parents(X))

* Learning and inference: efficient algorithms
exist.



An example
(from http://en.wikipedia.org/wiki/Bayesian_network)
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Another example
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Bayesian network: properties

Local Markov property: each variable X; is conditionally
independent of its nondecendants given its parents variables.

P(X, ..., Xp)
=11._; P(Xi| X1, ..., Xiz1))

-.az

— [11, P(X.|parents(X,))
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P(A,B,C, D, E) = P(B)P(E)P(A|B, E)P(C|A)P(D|E)

P(B.EC.D) — ZA P(A,B,C,D,E)
P(B,E|C,D) = —5i&5) ~ 5S> ST "P(A.B.C.D.E)
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Naive Bayes Model

AN

P(X,Y) = P(f1,f2,.... fn,Y)
= P(Y)P(11[Y)...P(fa]Y)

= POY) [T}, P(fulY)



HMM
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* State sequence: X, .4
* Output sequence: O, ,

P(Oy0 Xa0) = 7] [P | XP(O, 1 X,.0)



Generative model

* |tis a directed graphical model in which the

output (i.e., what to be predicted)
topologically precede the input (i.e., what is

given as observation).

* Naive Bayes and HMM are generative models.



Markov random field



Markov random field

 Also called “Markov network”

* |tis a graphical mode in which a set of random
variables have a Markov property:

— Local Markov property: A variable is conditionally
independent of all other variables given its
neighbors.

P(X;|X;,ne(X;)) = P(X;|ne(X;))



Cliques

A clique in an undirected graph is a subset of its vertices such that every
two vertices in the subset are connected by an edge.

A maximal clique is a cliqgue that cannot be extended by adding one more
vertex.

A maximum clique is a clique of the largest possible size in a given graph.

A
clique:

maximal clique:

D maximum clique:



Clique factorization

G = (V, E) be an undirected graph.
cl(G) be the set of cliques of G.

P(X) = % HCECZ(G) pc(Xc)

A P(A,B,C,D,E)

B C = ~¢apc(A,B,C)opr(B,E)¢ppr(D, E)pc,p(C, D)
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Conditional Random Field

Definition. Let & = (V,E) be a graph such that
Y = (Y,lpev. so that Y is indexed by the vertices
of . Then (X,Y) is a conditional random fiald in
case, when conditioned on X, the random variables Y,
obey the Markov property with respect to the graph:
PYe (X Yu,w 2 v) = p(Yy [X] Yo, v ~ v), where
w ro @ means that w and v are neighbors in .

A CRF is a random field globally conditioned on the
observation X.

I[A)
pyx) = 7 ] expq D Aanfan(ya.xa)

\X ’ﬁA:G LA

19



Linear-chain CRF



Motivation

e Sequence labeling problem: e.g., POS tagging

— HMM: Find best sequence, but cannot use rich
features

— MaxEnt: Use rich features, but may not find the
best sequence

 Linear-chain CRF;: HMM + MaxEnt



Relations between NB, MaxEnt, HMM, and CRF
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Linear-chain CRF
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Training and decoding

P(ylz) = 555 [Tiey 0t (W1, 411, )
Ot(Yts Yt—1,T) = exp(zj()\jfj(ytayt—laant)))

* Training: estimate A;
— similar to the one used for MaxEnt
— Ex: L-BFGS

* Decoding: find the best sequencey
— similar to the one used for HMM
— Viterbi algorithm



Skip-chain CRF



Motivation

 Sometimes, we need to handle long-distance dependency,
which is not allowed by linear-chain CRF

* An example: NE detection
— “Senator John Green ... Greenran...”

(e

NS

Senator Tohn {z1een , >resn ran
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Linear-chain CRF:

P(ylx) = 2t [T=1 &1 (1, 411, 7)

¢t(yt, Yt—1, 33) — €$P(Zk()\kfk (yta Yt—1, T, t)))

Skip-chain CRF:
P(y|33) — ﬁ[ﬂf:l Cbt(ytayt—laaj)Jh(u,U)ED ¢uv(yuay’vaazj

¢t(yt, Yt—1, 33) — €$P(Zk()\kfk (yta Yt—1, T, t)))

@uv (yu, Yoy 33) — eajp(Zk(AQkak (yw Yo, L, U, v)))
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Summary

* Graphical models:

— Bayesian network (BN)
— Markov random field (MRF)

* CRFis avariant of MRF:
— Linear-chain CRF: HMM + MaxEnt
— Skip-chain CRF: can handle long-distance dependency
— General CRF

* Pros and cons of CRF:
— Pros: higher accuracy than HMM and MaxEnt
— Cons: training and inference can be very slow



