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Why another learning method?

• It is based on some “beautifully simple” ideas (Schölkopf, 1998)

– Maximum margin decision hyperplane

• Member of class of kernel models (vs. attribute models)

• Empirically successful:

– Performs well on many practical applications

– Robust to noisy data complex distributions

– Natural extensions to semi-supervised learning
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Kernel methods
• Family of “pattern analysis” algorithms

• Best known element is the Support Vector Machine (SVM)

• Maps instances into higher dimensional feature space efficiently

• Applicable to:

– Classification

– Regression

– Clustering

– ….
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History of SVM 

• Linear classifier: 1962

– Use a hyperplane to separate examples

– Choose the hyperplane that maximizes the 
minimal margin

• Non-linear SVMs:

– Kernel trick: 1992
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History of SVM (cont)

• Soft margin: 1995

– To deal with non-separable data or  noise

• Semi-supervised variants:

– Transductive SVM:  1998

– Laplacian SVMs: 2006
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Main ideas

• Use a hyperplane to separate the examples.

• Among all the hyperplanes wx+b=0, choose 
the one with the maximum margin.

• Maximizing the margin is the same as 
minimizing ||w|| subject to some constraints.
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Main ideas (cont)

• For the data set that are not linear separable, 
map the data to a higher dimensional space 
and separate them there by a hyperplane. 

• The Kernel trick allows the mapping to be 
“done” efficiently. 

• Soft margin deals with noise and/or inseparable 
data set.
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Papers

• (Manning et al., 2008) 

– Chapter 15

• (Collins and Duffy, 2001): tree kernel
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Outline

• Linear SVM
– Maximizing the margin
– Soft margin

• Nonlinear SVM
– Kernel trick

• A case study

• Handling multi-class problems 
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Inner product vs. dot product



Dot product



Inner product

• An inner product is a generalization of the dot 
product.

• It is a function that satisfies the following 
properties:



Some examples



Linear SVM
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The setting

• Input:       x ε X
– x is a vector of real-valued feature values

• Output:    y ε Y,  Y = {-1, +1}

• Training set: S = {(x1, y1), …, (xi, yi)} 

• Goal: Find a function y = f(x) that fits the data: 

f: X  R
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Notations
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Linear classifier

• Consider the 2-D data below

• +: Class +1

• -:  Class -1

• Can we draw a line that

separates the two classes?

++

+ + ++ 

+  +
- - -

- - - - -

- - -
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Linear classifier

• Consider the 2-D data below

• +: Class +1

• -:  Class -1

• Can we draw a line that

separates the two classes?

• Yes!

– We have a linear classifier/separator; >2D hyperplane

++

+ + ++ 

+  +
- - -

- - - - -

- - -
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Linear classifier

• Consider the 2-D data below

• +: Class +1

• -:  Class -1

• Can we draw a line that

separates the two classes?

• Yes!

– We have a linear classifier/separator; >2D hyperplane

• Is this the only such separator?

++

+ + ++ 

+  +
- - -

- - - - -

- - -
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Linear classifier

• Consider the 2-D data below

• +: Class +1

• -:  Class -1

• Can we draw a line that

separates the two classes?

• Yes!

– We have a linear classifier/separator; >2D hyperplane

• Is this the only such separator?

– No

++

+ + ++ 

+  +
- - -

- - - - -

- - -
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Linear classifier

• Consider the 2-D data below

• +: Class +1

• -:  Class -1

• Can we draw a line that

separates the two classes?

• Yes!

– We have a linear classifier/separator; >2D hyperplane

• Is this the only such separator?

– No

• Which is the best?

++

+ + ++ 

+  +
- - -

- - - - -

- - -
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Maximum Margin Classifier

• What’s best classifier?
– Maximum margin

• Biggest distance between 
decision boundary and 
closest examples

• Why is this better?
– Intuition: 

• Which instances are we 
most sure of?
– Furthest from boundary

• Least sure of?
– Closest

• Create boundary with most 
‘room’ for error in attributes

++

+ + ++ 

+  +
- - -

- - - - -

- - -
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Complicating Classification

• Consider the new 2-D 
data below:

+: Class +1;    -:  Class -1

• Can we draw a line that 
separates the two 
classes?

++

+ - ++ 

+  +
- + -

- - - + -

- - -
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Complicating Classification

• Consider the new 2-D 
data below

+: Class +1;   -:  Class -1

• Can we draw a line that 
separates the two 
classes?
– No.

• What do we do?
– Give up and try another 

classifier? No.

++

+ - ++ 

+  +
- + -

- - - + -

- - -
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Noisy/Nonlinear Classification

• Consider the new 2-D data 
below:
+: Class +1;  -:  Class -1

• Two basic approaches:
– Use a linear classifier, but 

allow some (penalized) errors
• soft margin, slack variables

– Project data into higher 
dimensional space
• Do linear classification there
• Kernel functions

++

+ - ++ 

+  +
- + -

- - - + -

- - -
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Multiclass Classification

• SVMs create linear decision boundaries

– At basis binary classifiers

• How can we do multiclass classification?

– One-vs-all

– All-pairs

– ECOC

– ...
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SVM Implementations

• Many implementations of SVMs:

– SVM-Light: Thorsten Joachims
• http://svmlight.joachims.org

– LibSVM: C-C. Chang and C-J. Lin
• http://www.csie.ntu.edu.tw/~cjlin/libsvm/

– Weka’s SMO

– …
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SVMs: More Formally

• A hyperplane

• w: normal vector (aka weight vector), which is 
perpendicular to the hyperplane

• b: intercept term        

• ||w||:

– Euclidean norm of w

• = offset from origin 

<w, x > +b = 0

b

w
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Inner product example

• Inner product between two vectors
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Inner product (cont)
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cosine similarity = scaled inner product



Hyperplane Example

• <w,x>+b=0

• How many (w,b)s?

• Infinitely many!

– Just scaling

x1+2x2-2 = 0                 w=(1,2)    b=-2

10x1+20x2-20 = 0         w=(10,20)   b=-20      
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Finding a hyperplane

• Given the training instances, we want to find a 
hyperplane that separates them.

• If there are more than one hyperplane, SVM 
chooses the one with the maximum margin.
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Maximizing the margin

++

+
++

+

<w,x>+b=0Training: to find w and b.
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Support vectors

++

+
++

+

<w,x>+b=0<w,x>+b=-1

<w,x>+b=1
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Margins & Support Vectors

• Closest instances to hyperplane:

– “Support Vectors”

– Both pos/neg examples

• Add Hyperplanes through

– Support vectors

• d= 1/||w||

• How do we pick support vectors?   Training

• How many are there? Depends on data set
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SVM Training

• Goal: Maximum margin, consistent w/training data
– Margin = 1 /||w||

• How can we maximize?
– Max d Min ||w||

• So we will:
– Minimizing  ||w||2 

subject to
yi(<w,xi>+b) >= 1

• Quadratic Programming (QP) problem
– Can use standard QP solvers
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Let w=(w1, w2, w3, w4, w5)

X1  1    f1:2  f3:3.5  f4:-1
X2   -1  f2:-1  f3:2  
X3   1   f1:5  f4:2  f5:3.1  

We are trying to choose w and b for  
the hyperplane  wx + b = 0

1*(2w1 + 3.5w3 - w4) >= 1
(-1)*(-w2 + 2w3) >= 1
1*(5w1 + 2w4 + 3.1w5) >= 1



2w1 + 3.5w3 – w4 >= 1
-w2 +2w3 <= 1
5w1 + 2w4 + 3.1w5 >= 1

With those constraints, we want to minimize 
𝑤12 + 𝑤22 + 𝑤32 + 𝑤42 + 𝑤52



Training (cont)

subject to  the constraint 
++

+

++

+
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Lagrangian**
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The dual problem **

• Find 𝛼1, … , 𝛼𝑁 such that the following is 
maximized

• Subject to  
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• The solution has the form
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𝑏 = 𝑦𝑘−< w, 𝑥𝑘 >, for any 𝑥𝑘 whose weight is non-zero



An example
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𝑥1=(1, 0, 3),    𝑦1 = 1, α1=2  

𝑥2=(-1, 2, 0),    𝑦2 = −1, α2=3  

𝑥3=(0, -4, 1),    𝑦3 = 1, α3=0 
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𝑤= (1*1*2 + 3* (-1)*(-1) + 0*1*0, 

𝑥1=(1, 0, 3),    𝑦1 = 1, α1=2  

𝑥2=(-1, 2, 0),    𝑦2 = −1, α2=3  

𝑥3=(0, -4, 1),    𝑦3 = 1, α3=0 



44



Finding the solution

• This is a Quadratic Programming (QP) problem.

• The function is convex and there is no local minima.

• Solvable in polynomial time.
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Decoding with w and b

Hyperplane: w=(1,2), b=-2
f(x) = x1 + 2 x2 – 2 

x=(3,1)

x=(0,0)
46

f(x) = 3+2-2 = 3 > 0

f(x) = 0+0-2 = -2 < 0

(2,0)

(0,1)



Decoding with 𝛼𝑖

Decoding: 
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= ( 𝑖 < 𝛼𝑖 𝑦𝑖 𝑥𝑖, 𝑥 >) + 𝑏



kNN vs.  SVM
• Majority voting:

c* = arg maxc g(c)

• Weighted voting:  weighting is on each neighbor
c* = arg maxc i wi (c, fi(x))

• Weighted voting allows us to use more training examples:
e.g., wi = 1/dist(x, xi)
We can use all the training examples.
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(weighted kNN,  2-class)

(SVM)



Summary of linear SVM 

• Main ideas:

– Choose a hyperplane to separate instances: 

<w,x> + b = 0 

– Among all the allowed hyperplanes, choose the 
one with the max margin

– Maximizing margin is the same as minimizing 
||w||

– Choosing w is the same as choosing ®i
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The  problem     
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The dual problem **
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Remaining issues 

• Linear classifier: what if the data is not 
separable?

– The data would be linear separable without noise

 soft margin

– The data is not linear separable

map the data to a higher-dimension space

52



Soft margin
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The highlight

• Problem: Some data set is not separable or 
there are mislabeled examples.

• Idea: split the data as cleanly as possible, 
while maximizing the distance to the nearest 
cleanly split examples.

• Mathematically, introduce the slack variables
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Objective function

• For each training instance 𝑥𝑖 , introduce a slack 
variable 𝜀𝑖

• Minimizing 

such that 

C  is a regularization term (for controlling overfitting), 
k = 1 or 2
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Objective function

• For each training instance 𝑥𝑖 , introduce a slack 
variable 𝜀𝑖

• Minimizing 

such that 

C  is a regularization term (for controlling overfitting), 
k = 1 or 2
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The dual problem**

• Maximize

• Subject to  
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• The solution has the form
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𝑏 = 𝑦𝑘 1 − 𝜀𝑘 −< w, 𝑥𝑘 >, for k = arg𝑚𝑎𝑥𝑘 𝛼𝑘

𝑥𝑖 with non-zero 𝛼𝑖 is called a support vector.

Every data point which is misclassified or within 
the margin will have a non-zero 𝛼𝑖


