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Why another learning method?

* |tis based on some “beautifully simple” ideas (Scholkopf, 1998)
— Maximum margin decision hyperplane

»  Member of class of kernel models (vs. attribute models)

* Empirically successful:
— Performs well on many practical applications
— Robust to noisy data complex distributions
— Natural extensions to semi-supervised learning



Kernel methods

Family of “pattern analysis” algorithms
Best known element is the Support Vector Machine (SVM)
Maps instances into higher dimensional feature space efficiently
Applicable to:
— Classification

— Regression
— Clustering



History of SVM

* Linear classifier: 1962
— Use a hyperplane to separate examples

— Choose the hyperplane that maximizes the
minimal margin

e Non-linear SVMs:
— Kernel trick: 1992



History of SVM (cont)

e Soft margin: 1995

— To deal with non-separable data or noise

e Semi-supervised variants:
— Transductive SVM: 1998
— Laplacian SVMs: 2006



Main ideas

* Use a hyperplane to separate the examples.

 Among all the hyperplanes wx+b=0, choose
the one with the maximum margin.

* Maximizing the margin is the same as
minimizing | |w| | subject to some constraints.



Main ideas (cont)

* For the data set that are not linear separable,
map the data to a higher dimensional space
and separate them there by a hyperplane.

 The Kernel trick allows the mapping to be
“done” efficiently.

* Soft margin deals with noise and/or inseparable
data set.



Papers

* (Manning et al., 2008)
— Chapter 15

e (Collins and Duffy, 2001): tree kernel



Outline

Linear SVM
— Maximizing the margin
— Soft margin

Nonlinear SVM
— Kernel trick

A case study

Handling multi-class problems



Inner product vs. dot product



Dot product

The dot product of two vectors x=(z1,...,x,) and z=(z1, ..., 2n )

i1s defined as = - z = ZZ T2

x|l = V32 = Vo x



Inner product

 Aninner product is a generalization of the dot
product. ||33H _ \/< T, T >

* |tis a function that satisfies the following
properties:
<u+v,w>=<u,w >+ <v,w >
< cu, v >=c<Uu,v >
U,V >=< vV, U >
<u,u>2>0and <u,u>=0if u=20



Some examples
<Xy 2 >=) . CiTiZ
< (a,b),(c,d) >=(a+b)(c+d)+ (a—b)(c—d)

< f,g>= [ f(z)g(z)dx where f,g: [a,b] = R



Linear SVM



The setting

* |nput: X € X
— X is a vector of real-valued feature values

* Qutput: yeY, [Y= {-1, +1} ]

* Training set: S ={(xy, y;), ..., (x, y)}C X X Y

e Goal: Find a function y = f(x) that fits the data:
f: X = R

mm) Warning: z; is used in two ways in this lecture.
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Notations

x; has two meanings
e ;. It is a vector, representing the

i-th training instance.

e 1.: It is the i-th element of a vector

x, w, and z are vectors.

b 1s a real number



Linear classifier

Consider the 2-D data below
+: Class +1
- Class-12 + 4+

Can we draw a line that
separates the two classes?




Linear classifier

Consider the 2-D data below
+: Class +1
- Class-12 + 4+

Can we draw a line that
separates the two classes?

Yes!
— We have a linear classifier/separator; >2D—2> hyperplane



Linear classifier

Consider the 2-D data below
+: Class +1
- Class-12 + 4+

Can we draw a line that
separates the two classes?

Yes!
— We have a linear classifier/separator; >2D—2> hyperplane

Is this the only such separator?



Linear classifier

Consider the 2-D data below

++
+: CIaSS +1 + + ++
- Class-2 + +
Can we draw a line that o \

separates the two classes?

Yes!
— We have a linear classifier/separator; >2D-> hyperplane
Is this the only such separator?

— No



Linear classifier

Consider the 2-D data below
+: Class +1

-: Class -1

Can we draw a line that

separates the two classes?

Yes!
— We have a linear classifier/separator; >2D—2> hyperplane
Is this the only such separator?

— No

Which is the best?
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Maximum Margin Classifier

e What’s best classifier?

— Maximum margin

* Biggest distance between
decision boundary and
closest examples

 Why is this better?

— Intuition:

* Which instances are we
most sure of?

— Furthest from boundary
e Least sure of?
— Closest

* Create boundary with most
‘room’ for error in attributes
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Complicating Classification

e Consider the new 2-D
data below:

+: Class +1; -: Class -1

e Can we draw a line that
separates the two
classes?

R

++
+ - ++
+ +




Complicating Classification

e Consider the new 2-D
data below

+: Class +1; -: Class -1

e Can we draw a line that ++
separates the two 4. F-tA
classes? I i

— No. -

e What do we do?

— Give up and try another
classifier? No.



Noisy/Nonlinear Classification

e Consider the new 2-D data
below:

+: Class +1; -: Class -1

* Two basic approaches: +
— Use a linear classifier, but -+ - ot
allow some (penalized) errors .4 . *T A

* soft margin, slack variables

— Project data into higher
dimensional space

* Do linear classification there
* Kernel functions




Multiclass Classification

e SVMs create linear decision boundaries

— At basis binary classifiers

* How can we do multiclass classification?
— One-vs-all
— All-pairs
— ECOC



SVM Implementations

 Many implementations of SVMs:

— SVM-Light: Thorsten Joachims
e http://svmlight.joachims.org

— LibSVM: C-C. Chang and C-J. Lin

e http://www.csie.ntu.edu.tw/~cjlin/libsvm/

— Weka’s SMO


http://svmlight.joachims.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

SVMs: More Formally

A hyperplane <w,x>+b=0
w: normal vector (aka weight vector), which is
perpendicular to the hyperplane

b: intercept term

INARE <w,x>+b>0

— Euclidean norm of w

5]

offset from origin




Inner product example

* |Inner product between two vectors
T, Z>= ), T2

1, 2)
2, 3)

< T, Z>=1%-2) 4+ 2*3
=-2+06=4

P =
7= (



Inner product (cont)

— ||a:4|T>1<||z|| where HQ?HZ\/ZMU

_ _<z,z>
| ][] ]|

cosine similarity = scaled inner product
Inner product is a similarity function.

2
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Hyperplane Example

e <w,x>+b=0
e How many (w,b)s? (0,1)
* Infinitely many!

— Just scaling

X;+2X,-2 =0 w=(1,2) b=-2

10x,+20x,-20=0  w=(10,20) b=-20




Finding a hyperplane

* Given the training instances, we want to find a
hyperplane that separates them.

* |f there are more than one hyperplane, SVM
chooses the one with the maximum margin.

MALG MINGE S [{||:E’— || | TE€RN,<wW,T>+b= OH




Maximizing the margin

Training: to find w and b.

<w,x>+b=0
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Support vectors

<wx>+b=-1  <wW,x>+b=0
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Margins & Support Vectors

Closest instances to hyperplane
— “Support Vectors” A
— Both pos/neg examples | "

Add Hyperplanes through
— Support vectors

d=1/]w]|

How do we pick support vectors? Training
How many are there? Depends on data set



SVM Training

Goal: Maximum margin, consistent w/training data
— Margin=1/||w||

How can we maximize? *
— Maxd = Min | |w] |

So we will:

— Minimizing | |w]|?
subject to
yi(<w,x>+b) >=1

Quadratic Programming (QP) problem
— Can use standard QP solvers



y¢(< 117, T > —I—b) > 1

Let w=(w1, w2, w3, w4, w5)

X1 1 f1:2 f3:3.5 f4:-1 1*(2wl + 3.5w3 -w4) >=1
X2 -1 f2:-1 f3:2 (-1)*(-w2 + 2w3) >=1

X3 1 f1:5 f4:2 5:3.1 1*(5wl +2w4 + 3.1w5) >=1
We are trying to choose w and b for >

the hyperplane wx+b =0 2wl +3.5w3-w4>=1

-w2 +2w3 <=1
5wl +2w4 + 3.1w5>=1

With those constraints, we want to minimize
wi1? + w22 + w3? + w4? + w52



Training (cont)

Minimize ||w]|*

subject to the constraint

yq‘,(< w, T; > —I—b) > 1

|

yi(< w, T; > —|-b) —1>0
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Lagrangian™*

For each training instance (z7,v;), introduce «a; > 0.

Let a = (a1, a9, ....,an)

L(w,b, ) = Z||W]]? = >, ci(yi(< &, 7 > +b) — 1)

l minimize L w.r.t. w and b

N - N
Zi:l oY@ and Zi:1 a;y; =0

w



The dual problem **

* Find a4, ..., ay such that the following is
maximized

L(a) =) . a; — %Z” QoYY < Ty, T >
e Subject to

a; > 0and > . a;y; =0



e The solution has the form

—

W = Z@ ;Y T

— —

b =y,—<w,Xx; >, forany x; whose weightis non-zero



An example
W = Z@ O Y; Ly
x1=(1, O, 3), V1 = 1, (X1=2

x2=(-1, 2, O), Vo = _1, O(2=3
X3=(O, ‘4, 1), V3 = 1, (X3=O



W = ZZ gYiLg

x]_:(l, O, 3), V1 = 1, (X1=2
x2=('1, 2, O), Vo = —1, O(2=3
XBz(O, '4, 1), V3 = 1, (X3=O

w= (1*¥1*2 + 3* (-1)*(-1) + 0*1*0,
0+2x*(—1)%x3+40,

3x1%x24+0+0)
= (5, —6,6)



For support vectors, a; > 0

For other training examples, a; = 0

Removing them will not change the model.

Finding w is equivalent to finding
support vectors and their weights.



Finding the solution

e This is a Quadratic Programming (QP) problem.
e The function is convex and there is no local minima.

e Solvable in polynomial time.



Decoding with w and b

(0,1) f(x)=(w,x)+b

hix) =sign( f(x))

2,0
Hyperplane: w=(1,2), b=-2
f(x) =x; +2x,—2
x=(3,1) f(x) =3+2-2=3>0
x=(0,0) f(x) =0+0-2=-2<0



Decoding with a;

Decoding: f(Z) =< W,z > +0b
f(f) =< Z@ ;Y Ti, T > +b
= Qi <a;yix;,x>)+b

= > . 0y < T, > +b

<Uut+v,wo>=<u,w >+ <v,w >
< CU, UV >=cCc<Uu,v >



KNN vs. SVM

Majority voting:
c* = arg max. g(c)

Weighted voting: weighting is on each neighbor
= arg max_ 2. w, 9(c, fi(x))

Weighted voting allows us to use more training examples:
e.g., w; = 1/dist(x, x;)
=» We can use all the training examples.

— Zz 7; (weighted kNN, 2-class)

(@) =), oy <z @ >+b  (sVm)
:Zi[&i<$za >]yz_|_b




Summary of linear SVM

* Main ideas:
— Choose a hyperplane to separate instances:
<w,x>+b=0

— Among all the allowed hyperplanes, choose the
one with the max margin

— Maximizing margin is the same as minimizing
| [wl]

— Choosing w is the same as choosing o,



The problem

Training: Choose w and b

Mimimizes ||w||? subject to the constraints

yi(< W, x; > +b) > 1 for every (7, y;)

Decoding: Calculate f(x) =< w,x > +b



The dual problem **

Training: Calculate «; for each (27, y;)

Maximize L(a) = ) . o — %Zw QoYY < Ty, L >

subject to a; > 0 and ) . oy, =0

Decoding: f(Z) = ). auy; < Ti, & > +b



Remaining issues

e Linear classifier: what if the data is not
separable?

— The data would be linear separable without noise
=>» soft margin

— The data is not linear separable
=» map the data to a higher-dimension space



Soft margin



The highlight

* Problem: Some data set is not separable or
there are mislabeled examples.

* |dea: split the data as cleanly as possible,
while maximizing the distance to the nearest

cleanly split examples.

 Mathematically, introduce the slack variables
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Objective function

* For each training instance x;, introduce a slack
variable ¢;

 Minimizing % H’LU| |2 +C'(D_; &))"

C is a regularization term (for controlling overfitting),
k=1or?2

such that (< w, z; > +b) > 1_&
where & > 0



Objective function

* For each training instance x;, introduce a slack
variable ¢;

* Minimizing %H’LUHQ@ZZ@

C is a regularization term (for controlling overfitting),
k=1or?2

such that yi(< W, Ty > _|_b) > 1

where & > 0




The dual problem**

* Maximize
1 — —
L(Oé) = Zz o — 3 Zi,j Q;0YiY; < Tj, L5 >
* Subject to




e The solution has the form

b=vy,(1—¢,)—<w,x,>  fork=argmax, a

X; with non-zero «; is called a support vector.

Every data point which is misclassified or within
the margin will have a non-zero q;

Decoding: Calculate f(x) =< w,x > +b



