Support vector machines (I): Overview and Linear SVM

LING 572
Fei Xia

Why another learning method?

- It is based on some "beautifully simple" ideas (Schölkopf, 1998)
- Maximum margin decision hyperplane
- Member of class of kernel models (vs. attribute models)
- Empirically successful:
- Performs well on many practical applications
- Robust to noisy data complex distributions
- Natural extensions to semi-supervised learning

Kernel methods

- Family of "pattern analysis" algorithms
- Best known element is the Support Vector Machine (SVM)
- Maps instances into higher dimensional feature space efficiently
- Applicable to:
- Classification
- Regression
- Clustering
-

History of SVM

- Linear classifier: 1962
- Use a hyperplane to separate examples
- Choose the hyperplane that maximizes the minimal margin
- Non-linear SVMs:
- Kernel trick: 1992

History of SVM (cont)

- Soft margin: 1995
- To deal with non-separable data or noise
- Semi-supervised variants:
- Transductive SVM: 1998
- Laplacian SVMs: 2006

Main ideas

- Use a hyperplane to separate the examples.
- Among all the hyperplanes $w x+b=0$, choose the one with the maximum margin.
- Maximizing the margin is the same as minimizing $||w||$ subject to some constraints.

Main ideas (cont)

- For the data set that are not linear separable, map the data to a higher dimensional space and separate them there by a hyperplane.
- The Kernel trick allows the mapping to be "done" efficiently.
- Soft margin deals with noise and/or inseparable data set.

Papers

- (Manning et al., 2008)
- Chapter 15
- (Collins and Duffy, 2001): tree kernel

Outline

- Linear SVM
- Maximizing the margin
- Soft margin
- Nonlinear SVM
- Kernel trick
- A case study
- Handling multi-class problems

Inner product vs. dot product

Dot product

The dot product of two vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $z=\left(z_{1}, \ldots, z_{n}\right)$ is defined as $x \cdot z=\sum_{i} x_{i} z_{i}$

$$
\|x\|=\sqrt{\sum_{i} x_{i}^{2}}=\sqrt{x \cdot x}
$$

Inner product

- An inner product is a generalization of the dot product.

$$
\|x\|=\sqrt{<x, x>}
$$

- It is a function that satisfies the following properties:

$$
\begin{aligned}
& <u+v, w>=<u, w>+<v, w> \\
& <c u, v>=c<u, v> \\
& <u, v>=<v, u> \\
& <u, u>\geq 0 \text { and }<u, u>=0 \text { iff } u=0
\end{aligned}
$$

Some examples

$<x, z>=\sum_{i} c_{i} x_{i} z_{i}$
$<(a, b),(c, d)>=(a+b)(c+d)+(a-b)(c-d)$
$<f, g>=\int f(x) g(x) d x$ where $f, g:[a, b] \rightarrow R$

Linear SVM

The setting

- Input: $x \in X$
$-x$ is a vector of real-valued feature values
- Output: $\mathrm{y} \in \mathrm{Y}, \mathrm{Y}=\{-1,+1\}$
- Training set: $\mathrm{S}=\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)\right\} \subseteq X \times Y$
- Goal: Find a function $y=f(x)$ that fits the data: $f: X \rightarrow R$
Warning: x_{i} is used in two ways in this lecture.

Notations

x_{i} has two meanings

- $\overrightarrow{x_{i}}$: It is a vector, representing the
i-th training instance.
- x_{i} : It is the i -th element of a vector \vec{x}
x, w, and z are vectors.
b is a real number

Linear classifier

- Consider the 2-D data below
- +: Class +1
- -: Class -1
- Can we draw a line that separates the two classes?

Linear classifier

- Consider the 2-D data below
- +: Class +1
- -: Class -1
- Can we draw a line that separates the two classes?
- Yes!

- We have a linear classifier/separator; >2D \rightarrow hyperplane

Linear classifier

- Consider the 2-D data below
- +: Class +1
- -: Class -1
- Can we draw a line that separates the two classes?
- Yes!

- We have a linear classifier/separator; >2D \rightarrow hyperplane
- Is this the only such separator?

Linear classifier

- Consider the 2-D data below
- +: Class +1
- -: Class -1
- Can we draw a line that separates the two classes?
- Yes!

- We have a linear classifier/separator; >2D \rightarrow hyperplane
- Is this the only such separator?
- No

Linear classifier

- Consider the 2-D data below
- +: Class +1
- -: Class -1
- Can we draw a line that separates the two classes?
- Yes!

- We have a linear classifier/separator; >2D \rightarrow hyperplane
- Is this the only such separator?
- No
- Which is the best?

Maximum Margin Classifier

- What's best classifier?
- Maximum margin
- Biggest distance between decision boundary and closest examples
- Why is this better?
- Intuition:
- Which instances are we most sure of?
- Furthest from boundary

- Least sure of?
- Closest
- Create boundary with most 'room' for error in attributes

Complicating Classification

- Consider the new 2-D data below:
+: Class +1; -: Class -1
- Can we draw a line that separates the two classes?

Complicating Classification

- Consider the new 2-D data below +: Class +1; -: Class -1
- Can we draw a line that separates the two classes?
- No.
- What do we do?
- Give up and try another classifier? No.

Noisy/Nonlinear Classification

- Consider the new 2-D data below:
+: Class +1; -: Class -1
- Two basic approaches:
- Use a linear classifier, but allow some (penalized) errors
- soft margin, slack variables
- Project data into higher dimensional space

- Do linear classification there
- Kernel functions

Multiclass Classification

- SVMs create linear decision boundaries
- At basis binary classifiers
- How can we do multiclass classification?
- One-vs-all
- All-pairs
- ECOC
- ...

SVM Implementations

- Many implementations of SVMs:
- SVM-Light: Thorsten Joachims
- http://svmlight.joachims.org
- LibSVM: C-C. Chang and C-J. Lin
- http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Weka's SMO
- ...

SVMs: More Formally

- A hyperplane $<\vec{w}, \vec{x}>+b=0$
- w : normal vector (aka weight vector), which is perpendicular to the hyperplane
- b : intercept term
- ||w||:
- Euclidean norm of w
- $\frac{|b|}{\|w\|}=$ offset from origin

Inner product example

- Inner product between two vectors

$$
\begin{gathered}
\quad<\vec{x}, \vec{z}>=\sum_{i} x_{i} z_{i} \\
\vec{x}=(1,2) \\
\vec{z}=(-2,3) \\
<\vec{x}, \vec{z}>=1^{*}(-2)+2^{*} 3 \\
=-2+6=4
\end{gathered}
$$

Inner product (cont)

$<\vec{x}, \vec{z}>=\sum_{i} x_{i} z_{i}$
$\cos (\vec{x}, \vec{z})$
$=\frac{\sum_{i} x_{i} z_{i}}{\|x\| x\|z\|}$
where $\|x\|=\sqrt{\sum_{i} x_{i}^{2}}$
$=\frac{<x, z>}{\|x\| *\|z\|}$
cosine similarity = scaled inner product
Inner product is a similarity function.

Hyperplane Example

- $\langle\mathrm{w}, \mathrm{x}\rangle+\mathrm{b}=0$
- How many (w,b)s?

- Infinitely many!
- Just scaling
$(2,0) \quad x 1$

$$
\begin{array}{ll}
x_{1}+2 x_{2}-2=0 & w=(1,2) \quad b=-2 \\
10 x_{1}+20 x_{2}-20=0 & w=(10,20) \quad b=-20
\end{array}
$$

Finding a hyperplane

- Given the training instances, we want to find a hyperplane that separates them.
- If there are more than one hyperplane, SVM chooses the one with the maximum margin.

$$
\max _{\vec{w}, b} \min _{\overrightarrow{x_{i}} \in S}\left\{\left\|\vec{x}-\overrightarrow{x_{i}}\right\| \mid \vec{x} \in R^{N},<\vec{w}, \vec{x}>+b=0\right\}
$$

Maximizing the margin

Training: to find w and b.
$\langle w, x\rangle+b=0$

Support vectors

Margins \& Support Vectors

- Closest instances to hyperplane:
- "Support Vectors"
- Both pos/neg examples
- Add Hyperplanes through
- Support vectors
- $d=1 /\|w\|$

- How do we pick support vectors? Training
- How many are there? Depends on data set

SVM Training

- Goal: Maximum margin, consistent w/training data
- Margin = $1 /||w||$
- How can we maximize?
- Maxd \rightarrow Min $||w||$
- So we will:
- Minimizing $\|w\|^{2}$ subject to
$\left.y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right\rangle=1$

- Quadratic Programming (QP) problem
- Can use standard QP solvers
$y_{i}\left(<\vec{w}, \overrightarrow{x_{i}}>+b\right) \geq 1$

Let $w=(w 1, w 2, w 3, w 4, w 5)$

X1 1 f1:2 f3:3.5 f4:-1
X2 -1 f2:-1 f3:2
X3 1 f1:5 f4:2 f5:3.1
We are trying to choose w and b for the hyperplane $w x+b=0$

$$
\begin{aligned}
& 1^{*}(2 w 1+3.5 w 3-w 4)>=1 \\
& (-1)^{*}(-w 2+2 w 3)>=1 \\
& 1^{*}(5 w 1+2 w 4+3.1 w 5)>=1
\end{aligned}
$$

$$
2 w 1+3.5 w 3-w 4>=1
$$

$$
-w 2+2 w 3<=1
$$

$$
5 w 1+2 w 4+3.1 w 5>=1
$$

With those constraints, we want to minimize

$$
w 1^{2}+w 2^{2}+w 3^{2}+w 4^{2}+w 5^{2}
$$

Training (cont)

Minimize $\|w\|^{2}$

subject to the constraint

$$
y_{i}\left(<\vec{w}, \overrightarrow{x_{i}}>+b\right) \geq 1
$$

$y_{i}\left(<\vec{w}, \overrightarrow{x_{i}}>+b\right)-1 \geq 0$

Lagrangian**

For each training instance $\left(\overrightarrow{x_{i}}, y_{i}\right)$, introduce $\alpha_{i} \geq 0$.

$$
\text { Let } \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)
$$

$$
L(\vec{w}, b, \alpha)=\frac{1}{2}\|\vec{w}\|^{2}-\sum_{i} \alpha_{i}\left(y_{i}\left(<\vec{w}, \overrightarrow{x_{i}}>+b\right)-1\right)
$$

$$
\operatorname{minimize} \mathrm{L} \text { w.r.t. } \vec{w} \text { and } \mathrm{b}
$$

$$
\vec{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \overrightarrow{x_{i}} \text { and } \sum_{i=1}^{N} \alpha_{i} y_{i}=0
$$

The dual problem **

- Find $\alpha_{1}, \ldots, \alpha_{N}$ such that the following is maximized

$$
L(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}<\overrightarrow{x_{i}}, \overrightarrow{x_{j}}>
$$

- Subject to

$$
\alpha_{i} \geq 0 \text { and } \sum_{i} \alpha_{i} y_{i}=0
$$

- The solution has the form
$\vec{w}=\sum_{i} \alpha_{i} y_{i} \overrightarrow{x_{i}}$
$b=y_{k}-\left\langle\mathrm{w}, \overrightarrow{x_{k}}\right\rangle$, for any $\overrightarrow{x_{k}}$ whose weight is non-zero

An example

$$
\begin{aligned}
& \vec{w}=\sum_{i} \alpha_{i} y_{i} \overrightarrow{x_{i}} \\
& x_{1}=(1,0,3), \quad y_{1}=1, \quad \alpha_{1}=2 \\
& x_{2}=(-1,2,0), \quad y_{2}=-1, \quad \alpha_{2}=3 \\
& x_{3}=(0,-4,1), \quad y_{3}=1, \quad \alpha_{3}=0
\end{aligned}
$$

$\vec{w}=\sum_{i} \alpha_{i} y_{i} \overrightarrow{x_{i}}$

$$
\begin{aligned}
& x_{1}=(1,0,3), \quad y_{1}=1, \quad \alpha_{1}=2 \\
& x_{2}=(-1,2,0), \quad y_{2}=-1, \quad \alpha_{2}=3 \\
& x_{3}=(0,-4,1), \quad y_{3}=1, \quad \alpha_{3}=0
\end{aligned}
$$

$$
\vec{w}=\left(1^{*} 1^{*} 2+3^{*}(-1)^{*}(-1)+0^{*} 1^{*} 0\right.
$$

$$
0+2 *(-1) * 3+0
$$

$$
3 * 1 * 2+0+0)
$$

$$
=(5,-6,6)
$$

For support vectors, $\alpha_{i}>0$
For other training examples, $\alpha_{i}=0$
Removing them will not change the model.

Finding w is equivalent to finding support vectors and their weights.

Finding the solution

- This is a Quadratic Programming (QP) problem.
- The function is convex and there is no local minima.
- Solvable in polynomial time.

Decoding with w and b

Hyperplane: $w=(1,2), b=-2$

$$
f(x)=x_{1}+2 x_{2}-2
$$

$$
\begin{array}{ll}
x=(3,1) & f(x)=3+2-2=3>0 \\
x=(0,0) & f(x)=0+0-2=-2<0
\end{array}
$$

Decoding with α_{i}

$$
\vec{w}=\sum_{i} \alpha_{i} y_{i} \overrightarrow{x_{i}}
$$

Decoding: $\quad f(\vec{x})=<\vec{w}, \vec{x}>+b$

$$
\begin{aligned}
f(\vec{x}) & =<\sum_{i} \alpha_{i} y_{i} \overrightarrow{x_{i}}, \vec{x}>+b \\
& =\left(\sum_{i}<\alpha_{i} y_{i} x_{i}, x>\right)+b \\
& =\sum_{i} \alpha_{i} y_{i}<\overrightarrow{x_{i}}, \vec{x}>+b
\end{aligned}
$$

$<u+v, w\rangle=<u, w\rangle+\langle v, w\rangle$
$<c u, v>=c<u, v>$

kNN vs. SVM

- Majority voting:

$$
c^{*}=\arg \max _{c} g(c)
$$

- Weighted voting: weighting is on each neighbor $c^{*}=\arg \max _{\mathrm{c}} \sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \delta\left(\mathrm{c}, \mathrm{f}_{\mathrm{i}}(\mathrm{x})\right)$
- Weighted voting allows us to use more training examples:

$$
\text { e.g., } w_{i}=1 / \operatorname{dist}\left(x, x_{i}\right)
$$

\rightarrow We can use all the training examples.

$$
\begin{align*}
f(\vec{x}) & =\sum_{i} w_{i} y_{i} \quad \text { (weighted kNN, 2-class) } \\
f(\vec{x}) & =\sum_{i} \alpha_{i} y_{i}<\overrightarrow{x_{i}}, \vec{x}>+b \tag{SVM}\\
& =\sum_{i} \alpha_{i}<\overrightarrow{x_{i}}, \vec{x}>y_{i}+b
\end{align*}
$$

Summary of linear SVM

- Main ideas:
- Choose a hyperplane to separate instances:

$$
\langle w, x\rangle+b=0
$$

- Among all the allowed hyperplanes, choose the one with the max margin
- Maximizing margin is the same as minimizing ||w||
- Choosing w is the same as choosing α_{i}

The problem

Training: Choose \vec{w} and b
Mimimizes $\|w\|^{2}$ subject to the constraints $y_{i}\left(<\vec{w}, \overrightarrow{x_{i}}>+b\right) \geq 1$ for every $\left(\overrightarrow{x_{i}}, y_{i}\right)$

Decoding: Calculate $f(x)=<w, x>+b$

The dual problem **

Training: Calculate α_{i} for each $\left(\overrightarrow{x_{i}}, y_{i}\right)$
Maximize $L(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}<\overrightarrow{x_{i}}, \overrightarrow{x_{j}}>$
subject to $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i} y_{i}=0$

Decoding: $f(\vec{x})=\sum_{i} \alpha_{i} y_{i}<\overrightarrow{x_{i}}, \vec{x}>+b$

Remaining issues

- Linear classifier: what if the data is not separable?
- The data would be linear separable without noise
\rightarrow soft margin
- The data is not linear separable
\rightarrow map the data to a higher-dimension space

Soft margin

The highlight

- Problem: Some data set is not separable or there are mislabeled examples.
- Idea: split the data as cleanly as possible, while maximizing the distance to the nearest cleanly split examples.
- Mathematically, introduce the slack variables

Objective function

- For each training instance x_{i}, introduce a slack variable ε_{i}
- Minimizing $\quad \frac{1}{2}\|w\|^{2}+C\left(\sum_{i} \xi_{i}\right)^{k}$

C is a regularization term (for controlling overfitting), $k=1$ or 2
such that $y_{i}\left(<\vec{w}, \vec{x}_{i}>+b\right) \geq 1-\xi_{i}$

$$
\text { where } \xi_{i} \geq 0
$$

Objective function

- For each training instance x_{i}, introduce a slack variable ε_{i}
- Minimizing $\quad \frac{1}{2}\|w\|^{2}+C\left(\sum_{i} \xi_{i}\right)^{k}$

C is a regularization term (for controlling overfitting), $k=1$ or 2
such that $y_{i}\left(<\vec{w}, \overrightarrow{x_{i}}>+b\right) \geq 1-\xi_{i}$

$$
\text { where } \xi_{i} \geq 0
$$

The dual problem**

- Maximize

$$
L(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}<\overrightarrow{x_{i}}, \overrightarrow{x_{j}}>
$$

- Subject to

$$
C \geq \alpha_{i} \geq 0 \text { and } \sum_{i} \alpha_{i} y_{i}=0
$$

- The solution has the form

$$
\begin{aligned}
& \vec{w}=\sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \\
& b=y_{k}\left(1-\varepsilon_{k}\right)-<\mathrm{w}, x_{k}>, \quad \text { for } \mathrm{k}=\arg \max _{k} \alpha_{k}
\end{aligned}
$$

$\overrightarrow{x_{i}}$ with non-zero α_{i} is called a support vector.
Every data point which is misclassified or within the margin will have a non-zero α_{i}

Decoding: Calculate $f(x)=<w, x>+b$

