Reducing Multiclass to Binary

LING572
Fei Xia

Highlights

- What?
- Converting a k-class problem to a binary problem.
- Why?
- For some ML algorithms, a direct extension to the multiclass case may be problematic.
- Ex: Boosting, support-vector machines (SVM)
- How?
- Many methods

Methods

- One-vs-all
- All-pairs
- Error-correcting Output Codes (ECOC)**: see additional slides

One-vs-all

- Idea:
- Each class is compared to all others.
-K classifiers: one classifier for each class.
- Training time:
- For each class c_{m}, train a classifier $\mathrm{cl}_{\mathrm{m}}(\mathrm{x})$
- replace (x, y) with

$$
\begin{aligned}
& (x, 1) \text { if } y=c_{m} \\
& (x,-1) \text { if } y!=c_{m}
\end{aligned}
$$

An example: training

- x1 c1 ...
- x2 c2
- x3 c1 ...
- x4c3...
$\begin{array}{ll}\text { for } & \text { c2-vs-all: } \\ \text { x1 } & -1 \\ \text { x2 } & 1 \ldots \\ \text { x3 } & -1\end{array}$
for c1-vs-all:
x1 1...
x2 -1...
x3 $1 \ldots$
x4 -1...
for c3-vs-all:
x1 -1...
x2 -1...
x3 -1 ...
x4 $1 \ldots$

One-vs-all (cont)

- Testing time: given a new example x - Run each of the k classifiers on x
- Choose the class c_{m} with the highest confidence score $\mathrm{cl}_{\mathrm{m}}(\mathrm{x})$:

$$
\mathrm{c}^{\star}=\arg \max _{\mathrm{m}} \mathrm{cl}_{\mathrm{m}}(\mathrm{x})
$$

An example: testing

- x1 c1 ...
- x2 c2 ...
- x3 c1 ...
- x4c3...
\rightarrow three classifiers
for c1-vs-all:

$$
\begin{array}{lllll}
x & ? ? & 1 & 0.7 & -1
\end{array} 0.3
$$

for c2-vs-all
$\begin{array}{llllll}x & ? ? & 1 & 0.2 & -1 & 0.8\end{array}$
for c3-vs-all
$\begin{array}{lllll}x & ? ? & 1 & 0.6 & -1\end{array} 0.4$
$=>$ what's the system prediction for x ?

All-pairs

- Idea:
- all pairs of classes are compared to each other
$-\mathrm{C}_{k}{ }^{2}$ classifiers: one classifier for each class pair.
- Training:
- For each pair ($\mathrm{c}_{\mathrm{m}}, \mathrm{c}_{\mathrm{n}}$) of classes, train a classifier $\mathrm{cl}_{\mathrm{mn}}$
- replace a training instance (x, y) with
$(x, 1)$ if $y=c_{m}$
$(x,-1)$ if $y=c_{n}$
otherwise ignore the instance

An example: training

- x1 c1 ...
- x2 c2
- x3 c1 ...
- x4c3...
for c2-vs-c3:
x2 1...
x4 -1...
for c1-vs-c2:
x1 1...
x2 -1...
for c1-vs-c3:
x1 1...
x3 1 ...
x4 -1...

All-pairs (cont)

- Testing time: given a new example x
- Run each of the $C_{k}{ }^{2}$ classifiers on x
- Max-win strategy: Choose the class C_{m} that wins the most pairwise comparisons:
- Other coupling models have been proposed: e.g., (Hastie and Tibshirani, 1998)

An example: testing

- x1 c1 ...
- x2 c2 ...
- x3 c1 ...
- x4c3...
\rightarrow three classifiers

Test data:
x ?? f1 v1...
for c1-vs-c2:

$$
\begin{array}{lllll}
x & ? ? & 1 & 0.7 & -1
\end{array} 0.3
$$

for c2-vs-c3
$\begin{array}{llllll}x & ? ? & 1 & 0.2 & -1 & 0.8\end{array}$
for c1-vs-c3
$\begin{array}{lllll}x & ? ? & 1 & 0.6 & -1\end{array} 0.4$
=> what's the system prediction for x ?

Summary

- Different methods:
- Direct multiclass
- One-vs-all (a.k.a. one-per-class): k-classifiers
- All-pairs: $\mathrm{C}_{k}{ }^{2}$ classifiers
- ECOC: n classifiers (n is the num of columns)
- Some studies report that All-pairs and ECOC work better than one-vs-all.

Additional slides

Error-correcting output codes (ECOC)

- Proposed by (Dietterich and Bakiri, 1995)
- Idea:
- Each class is assigned a unique binary string of length n .
- Train n classifiers, one for each bit.
- Testing time: run n classifiers on x to get a n-bit string s, and choose the class which is closest to s.

An example

Class	Code Word					
	vl	hl	dl	cc	ol	or
0	0	0	0	1	0	0
1	1	0	0	0	0	0
2	0	1	1	0	1	0
3	0	0	0	0	1	0
4	1	1	0	0	0	0
5	1	1	0	0	1	0
6	0	0	1	1	0	1
7	0	0	1	0	0	0
8	0	0	0	1	0	0
9	0	0	1	1	0	0

Meaning of each column

Column position	Abbreviation	Meaning
1	vl	contains vertical line
2	hl	contains horizontal line
3	dl	contains diagonal line
4	cc	contains closed curve
5	ol	contains curve open to left
6	or	contains curve open to right

Another example: 15-bit code for a 10-class problem

Class	Code Word														
	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}	f_{9}	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}
0	1	1	0	0	0	0	1	0	1	0	0	1	1	0	1
1	0	0	1	1	1	1	0	1	0	1	1	0	0	1	0
2	1	0	0	1	0	0	0	1	1	1	1	0	1	0	1
3	0	0	1	1	0	1	1	1	0	0	0	0	1	0	1
4	1	1	1	0	1	0	1	1	0	0	1	0	0	0	1
5	0	1	0	0	1	1	0	1	1	1	0	0	0	0	1
6	1	0	1	1	1	0	0	0	0	1	0	1	0	0	1
7	0	0	0	1	1	1	1	0	1	0	1	1	0	0	1
8	1	1	0	1	0	1	1	0	0	1	0	0	0	1	1
9	0	1	1	1	0	0	0	0	1	0	1	0	0	1	1

Hamming distance

- Definition: the Hamming distance between two strings of equal length is the number of positions for which the corresponding symbols are different.
- Ex:
- 10111 and 10010
- 2143 and 2233
- Toned and roses

How to choose a good errorcorrecting code?

- Choose the one with large minimum Hamming distance between any pair of code words.
- If the min Hamming distance is d, then the code can correct at least ($\mathrm{d}-1$)/2 single bit errors.

Two properties of a good ECOC

- Row separations: Each codeword should be well-separated in Hamming distance from each of the other codewords
- Column separation: Each bit-position function f_{i} should be uncorrelated with each of the other f_{j}.

All possible columns for a three-class problem

	Code Word							
c^{2} Class	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}	f_{6}	f_{6}	f_{7}
c_{0}	0	0	0	0	1	1	1	1
c_{1}	0	0	1	1	0	0	1	1
c_{2}	0	1	0	1	0	1	0	1

If there are k classes, there will be at most $2^{k-1}-1$ usable columns after removing complements and the all-zeros or all-ones column.

Finding a good code for different values of k

- Exhaustive codes
- Column selection from exhaustive codes
- Randomized hill climbing
- BCH codes

Results

