Hyperplane

Point and vector

- A point in n-dimensional space is given by an n-tuple, e.g., $P=\left(p_{i}\right)$
- A point denotes an absolute position in space
- A vector represents magnitude and direction in space, and is given by an n-tuple.
- Vectors do not have a fixed position in place, but can be located at any initial base point P.
- The vector from point P to Q is given by $v=Q-P=\left(q_{i}-p_{i}\right)$
- Vector addition: $\mathrm{v}+/-\mathrm{w}=\left(\mathrm{v}_{\mathrm{i}}+/-\mathrm{w}_{\mathrm{i}}\right)$
- The length of a vector $\mathrm{v}:|\mathrm{v}|=\sqrt{\sum_{i=1}^{n} v_{i}{ }^{2}}$
- http://geomalgorithms.com/points_and_vectors.html

Normal vector

- A normal vector is a vector perpendicular to another object (e.g., a plane).
- A unit normal vector is a normal vector of length one. If N is a normal vector, the unit normal vector is $N /|N|$, where $|N|$ is the length of N.

The equation for a hyperplane

- A 3-D plane determined by normal vector $\mathrm{N}=(\mathrm{A}, \mathrm{B}, \mathrm{C})$ and point $Q=(x 0, y 0, z 0)$ is:

$$
A(x-x 0)+B(y-y 0)+C(z-z 0)=0
$$

which can be written as

$$
A x+B y+C z+D=0, \text { where } D=-A x 0-B y 0-c z 0
$$

- Hyperplane: $w x+d=0$,
where w is a normal vector, x is a point on the hyperplane
- It separates the space into two half-spaces:
$w x+d>0$ and $w x+d<0$

The distance from a point to a plane

- Given a plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0$, and a point $\mathrm{P}=(\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1)$, the distance from P to the plane is:

$$
d=\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

See http://mathinsight.org/distance_point_plane

- Distance from a point x to a hyperplane $w x+d=0$ is:
$|w x+d| /||w||$

Distance between two parallel planes

- Two planes $A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $A_{2} x+B_{2} y+C_{2} z+D_{2}=0$ are parallel if $A_{1}=k A_{2}, B_{1}=k B_{2}$ and $C_{1}=k C_{2}$
- The distance between $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D} 1=0$ and $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D} 2=0$ is equal to the distance from a point ($x 1, y 1, z 1$) on the first plane to the second plane:

$$
\frac{\left|A x_{1}+B y_{1}+C z_{1}+D 2\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}=\frac{|D 2-D 1|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

- The distance between two hyperplanes $w x+d 1=0$ and $w x+d 2=0$ is

$$
\frac{|d 2-d 1|}{\|w\|}
$$

