Support vector machine (ll):
non-linear SVM

LING 572
Fei Xia

Outline

Linear SVM
— Maximizing the margin
— Soft margin

Nonlinear SVM
— Kernel trick

A case study

Handling multi-class problems

Non-linear SVM

The highlight

 Problem: Some data are not linear separable.

* Intuition: to transform the data to a high dimension space

o O io) éix)

X dlo)

Input space Feature space

Example: the two spirals

Separated by a hyperplane
in feature space (Gaussian
kernels)

Feature space

* Learning a non-linear classifier using SVM:
— Define ¢
— Calculate ¢(x) for each training example
— Find a linear SVM in the feature space.

* Problems:

— Feature space can be high dimensional or even have
infinite dimensions.

— Calculating ¢(x) is very inefficient and even
impossible.

— Curse of dimensionality

Kernels

* Kernels are similarity functions that return inner
products between the images of data points.

K: X xX—=R
K(7,2) =< ¢(7), p(Z) >

* Kernels can often be computed efficiently even
for very high dimensional spaces.

* Choosing K is equivalent to choosing ¢.
=>» the feature space is implicitly defined by K

An example

K(%,2) =< ¢(Z), p(Z) >
=< (1,4,2v2), (4,9, —6/2) >
= 1%x4+4%x9—-2x06%x2 =10

< T F>=-2+2%3=4

An example**

] .-l-.._ s
. l-" -i
0.5 .
-
o, - -
0 s " o
. . .
. . s a® *
0.5 "t om
- ¥ .
-
1
-I..:-l T T
-1.5 1 0.5 0 (i 1 1.5
I.t.l

From Page 750 of (Russell and Norvig, 2002)

Another example**

Let ¢(7) = (23,23, V32322,V 32123)

(':Cla 3327 \/_3315132, \/_331562) (Z17Z27 \/_ZIZQa \/_2122)

2
= 1327 + 2525 + 3xi27 1029 + 3T1 217525

— (2121 + T220)>

=< F, 7 >3

The kernel trick

* No need to know what ¢ is and what the
feature space is.

* No need to explicitly map the data to the
feature space.

* Define a kernel function K, and replace the
dot produce <x,z> with a kernel function
K(X,2) In both training and testing.

Training (**)

Maximize

La) =37 i — 5 2055 ity [< Ti, & >J

Subjectto ¢; > 0 and Z,L ;Y — 0

1 Non-linear SVM

Lia) =370t =52 Oéiajyiyj[f((ﬁ:» fj)}

13

Decoding

Linear SVM: (without mapping)

f(Z) =< W, T > +b

= Z,L oL Y [< XT;, T >J—|—b

Non-linear SVM: w could be infinite dimensional

f(T) =), s [K(ff;, fﬂ‘" b

14

Kernel vs. features

Training: Maximize L(a) = ZZ oy — % Zw oz@-oajy@-yj[K(f;, f})}

subject to o; > 0 and > . a;y; =0

Decoding: f(Z) =). a,y; [K(:E;, f)}% b

Need to calculate K(x, z).

For some kernels, no need to represent x as a feature vector.

15

A tree kernel

Common kernel functions

-

Linear : K(Z,2) =<Z,Z>
Polynominal: K (7 2) = (v < Z,7 > _|_C)
Radial basis function (RBF): K (¥, Z) = e—1(1Z—Z][)?

Sigmoid: K (&, 2) = tanh(y < Z,Z > +c)

tanh(x) = ‘Zz;z:z

For the tanh function, see https://www.youtube.com/watch?v=er_tQOBgo-I

Polynomial kernel

* |t allows us to model feature conjunctions (up
to the order of the polynomial).

* EX:
— Original feature: single words
— Quadratic kernel: word pairs, e.g., “ethnic” and

” o

“cleansing”, “Jordan” and “Chicago”

Other kernels

e Kernels for
— trees
— seguences
— sets
— graphs
— general structures

* Atree kernel example in reading #3

The choice of kernel function

e Given a function, we can test whetheritis a

kernel function by using Mercer’s theorem (see
“Additional slides”).

* Different kernel functions could lead to very
different results.

* Need some prior knowledge in order to choose a
good kernel.

Summary so far

Find the hyperplane that maximizes the margin.
Introduce soft margin to deal with noisy data

Implicitly map the data to a higher dimensional space to
deal with non-linear problem:s.

The kernel trick allows infinite number of features and
efficient computation of the dot product in the feature
space.

The choice of the kernel function is important.

MaxEnt vs. SVM

MaxEnt SVM
Modeling Maximize P(Y|X, A) Maximize the margin
Training Learn A, for each feature | Learn «; for each
function training instance and b
Decoding Calculate P(y|x) Calculate the sign of
f(x). It is not prob
Things to Features Kernel
decide

Regularization

Training algorithm

Regularization
Training algorithm

Binarization

23

More info

Website: www.kernel-machines.org

Textbook (2000): www.support-vector.net

Tutorials: http://www.svms.org/tutorials/

Workshops at NIPS

http://www.kernel-machines.org/
http://www.support-vector.net/

Additional slides

Linear kernel

* The map ¢ is linear.
¢($) — (alel, A2, ..., an$n)

K(z,2) =< ¢(z), $(2) >
— a%azlzl -+ a%atgzg + ... + a%xnzn

* The kernel adjusts the weight of the features
according to their importance.

The Kernel Matrix
(a.k.a. the Gram matrix)

K(1,1) [K(1,2) |K(1,3) K(1,m)
K(2,1) [K(2,2) |K(2,3) K(2,m)
K(m,1) |K(m,2) |K(m,3) K(m,m)

K(i, j) means K(x;, x;),

where x; means the i-th training instance.

Mercer’s Theorem

 The kernel matrix is symmetric positive definite.

* Any symmetric, positive definite matrix can be
regarded as a kernel matrix; that is, there exists a ¢
such that K(x, z) = <¢(x), o(z)>

Making kernels

* The set of kernels is closed under some
operations. For instance, if K; and K, are
kernels, so are the following:

— K; +K,
—cK;and cK, forc>0
—cK,; +dK, forc>0andd>0

* One can make complicated kernels from
simples ones

