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Outline

• Linear SVM
– Maximizing the margin
– Soft margin

• Nonlinear SVM
– Kernel trick

• A case study

• Handling multi-class problems 
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Non-linear SVM
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The highlight

• Problem: Some data are not linear separable.

• Intuition: to transform the data to a high dimension space

Input space Feature space 
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Example: the two spirals

Separated by a hyperplane
in feature space (Gaussian 

kernels)
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Feature space

• Learning a non-linear classifier using SVM:
– Define Á
– Calculate Á(x) for each training example
– Find a linear SVM in the feature space.

• Problems:
– Feature space can be high dimensional or even have 

infinite dimensions.
– Calculating Á(x)  is very inefficient and even 

impossible.
– Curse of dimensionality
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Kernels

• Kernels are similarity functions that return inner 
products between the images of data points.

• Kernels can often be computed efficiently even 
for very high dimensional spaces.

• Choosing K is equivalent to choosing Á.
 the feature space is implicitly defined by K
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An example
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An example**
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From Page 750 of (Russell and Norvig,  2002)



Another example**
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The kernel trick

• No need to know what Á is and what the 
feature space is.

• No need to explicitly map the data to the 
feature space. 

• Define a kernel function K, and replace the 
dot produce <x,z> with a kernel function 
K(x,z) in both training and testing.  
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Training (**)

Maximize

Subject to  
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Non-linear SVM



Decoding

Linear SVM: (without mapping) 

Non-linear SVM: w could be infinite dimensional 
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Kernel  vs. features
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A  tree  kernel



Common kernel functions

• Linear : 

• Polynominal: 

• Radial basis function (RBF):

• Sigmoid:
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For the tanh function, see https://www.youtube.com/watch?v=er_tQOBgo-I
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Polynomial kernel

• It allows us to model feature conjunctions (up 
to the order of the polynomial).

• Ex: 

– Original feature:  single words

– Quadratic kernel: word pairs, e.g., “ethnic” and 
“cleansing”,  “Jordan” and “Chicago”
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Other kernels

• Kernels for
– trees

– sequences

– sets

– graphs

– general structures

– …

• A tree kernel example in reading #3
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The choice of kernel function

• Given a function, we can test whether it is a 
kernel function by  using Mercer’s theorem (see 
“Additional slides”).

• Different kernel functions could lead to very 
different results. 

• Need some prior knowledge in order to choose a 
good kernel.
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Summary so far

• Find the hyperplane that maximizes the margin.

• Introduce soft margin to deal with noisy data

• Implicitly map the data to a higher dimensional space to 
deal with non-linear problems.

• The kernel trick allows infinite number of features and 
efficient computation of the dot product in the feature 
space.

• The choice of the kernel function is important.
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MaxEnt vs. SVM
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MaxEnt SVM

Modeling Maximize P(Y|X, ¸) Maximize the margin

Training Learn ¸i for each feature 
function

Learn ®i for each  
training instance and b

Decoding Calculate P(y|x) Calculate the sign of 
f(x). It is not prob

Things to 
decide

Features

Regularization

Training algorithm 

Kernel

Regularization

Training algorithm

Binarization



More info

• Website: www.kernel-machines.org

• Textbook (2000):  www.support-vector.net

• Tutorials:  http://www.svms.org/tutorials/

• Workshops at NIPS
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http://www.kernel-machines.org/
http://www.support-vector.net/


Additional slides
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Linear kernel

• The map Á is linear.

• The kernel adjusts the weight of the features 
according to their importance.
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The  Kernel  Matrix
(a.k.a. the Gram matrix)

K(1,1) K(1,2) K(1,3) … K(1,m)

K(2,1) K(2,2) K(2,3) … K(2,m)

…

…

K(m,1) K(m,2) K(m,3) … K(m,m)
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K(i, j)  means K(𝑥𝑖 , 𝑥𝑗),

where 𝑥𝑖 means the i-th training instance. 



Mercer’s Theorem

• The kernel matrix is symmetric positive definite.

• Any symmetric, positive definite matrix can be 
regarded as a kernel matrix; that is, there exists a Á
such that K(x, z) = <Á(x), Á(z)>
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Making kernels

• The set of kernels is closed under some 
operations. For instance, if K1 and K2 are 
kernels, so are the following:
– K1 +K2

– cK1 and cK2 for c > 0

– cK1 +dK2 for c > 0 and d > 0

• One can make complicated kernels from 
simples ones
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