Support vector machine (II): non-linear SVM

LING 572
Fei Xia

Outline

- Linear SVM
- Maximizing the margin
- Soft margin
- Nonlinear SVM
- Kernel trick
- A case study
- Handling multi-class problems

Non-linear SVM

The highlight

- Problem: Some data are not linear separable.
- Intuition: to transform the data to a high dimension space

Example: the two spirals

Separated by a hyperplane in feature space (Gaussian kernels)

Feature space

- Learning a non-linear classifier using SVM:
- Define ϕ
- Calculate $\phi(\mathrm{x})$ for each training example
- Find a linear SVM in the feature space.
- Problems:
- Feature space can be high dimensional or even have infinite dimensions.
- Calculating $\phi(\mathrm{x})$ is very inefficient and even impossible.
- Curse of dimensionality

Kernels

- Kernels are similarity functions that return inner products between the images of data points.

$$
\begin{aligned}
& K: X \times X \rightarrow R \\
& K(\vec{x}, \vec{z})=<\phi(\vec{x}), \phi(\vec{z})>
\end{aligned}
$$

- Kernels can often be computed efficiently even for very high dimensional spaces.
- Choosing K is equivalent to choosing ϕ.
\rightarrow the feature space is implicitly defined by K

An example

Let $\phi(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)$
Let $\vec{x}=(1,2) \vec{z}=(-2,3)$
$\phi(\vec{x})=(1,4,2 \sqrt{2}) \quad \phi(\vec{z})=(4,9,-6 \sqrt{2})$

$$
\begin{aligned}
& K(\vec{x}, \vec{z})=<\phi(\vec{x}), \phi(\vec{z})> \\
& =<(1,4,2 \sqrt{2}),(4,9,-6 \sqrt{2})> \\
& =1 * 4+4 * 9-2 * 6 * 2=16 \\
& <\vec{x}, \vec{z}>=-2+2 * 3=4
\end{aligned}
$$

An example**

Let $\phi(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)$
$K(\vec{x}, \vec{z})$
$=<\phi(\vec{x}), \phi(\vec{z})>$
$=<\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right),\left(z_{1}^{2}, z_{2}^{2}, \sqrt{2} z_{1} z_{2}\right)>$
$=x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} z_{1} x_{2} z_{2}$
$=\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2}$
$=<\vec{x}, \vec{z}>^{2}$

From Page 750 of (Russell and Norvig, 2002)

Another example**

Let $\phi(\vec{x})=\left(x_{1}^{3}, x_{2}^{3}, \sqrt{3} x_{1}^{2} x_{2}, \sqrt{3} x_{1} x_{2}^{2}\right)$

$$
\begin{aligned}
& K(\vec{x}, \vec{z}) \\
& =<\phi(\vec{x}), \phi(\vec{z})>
\end{aligned}
$$

$$
=<\left(x_{1}^{3}, x_{2}^{3}, \sqrt{3} x_{1}^{2} x_{2}, \sqrt{3} x_{1} x_{2}^{2}\right),\left(z_{1}^{3}, z_{2}^{3}, \sqrt{3} z_{1}^{2} z_{2}, \sqrt{3} z_{1} z_{2}^{2}\right)>
$$

$$
=x_{1}^{3} z_{1}^{3}+x_{2}^{3} z_{2}^{3}+3 x_{1}^{2} z_{1}^{2} x_{2} z_{2}+3 x_{1} z_{1} x_{2}^{2} z_{2}^{2}
$$

$$
=\left(x_{1} z_{1}+x_{2} z_{2}\right)^{3}
$$

$$
=<\vec{x}, \vec{z}>^{3}
$$

The kernel trick

- No need to know what ϕ is and what the feature space is.
- No need to explicitly map the data to the feature space.
- Define a kernel function K, and replace the dot produce $<x, z>$ with a kernel function $\mathrm{K}(\mathrm{x}, \mathrm{z})$ in both training and testing.

Training (**)

Maximize

$$
L(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}<\overrightarrow{x_{i}}, \overrightarrow{x_{j}}>
$$

Subject to $\quad \alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i} y_{i}=0$

Non-linear SVM

$$
L(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\overrightarrow{x_{i}}, \overrightarrow{x_{j}}\right)
$$

Decoding

Linear SVM: (without mapping)

$$
\begin{aligned}
f(\vec{x}) & =<\vec{w}, \vec{x}>+b \\
& =\sum_{i} \alpha_{i} y_{i}<\overrightarrow{x_{i}}, \vec{x}>+b
\end{aligned}
$$

Non-linear SVM: w could be infinite dimensional

$$
f(\vec{x})=\sum_{i} \alpha_{i} y_{i} W\left(\overrightarrow{x_{i}}, \vec{x}\right)+b
$$

Kernel vs. features

Training: Maximize $L(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\overrightarrow{x_{i}}, \overrightarrow{x_{j}}\right)$

$$
\text { subject to } \alpha_{i} \geq 0 \text { and } \sum_{i} \alpha_{i} y_{i}=0
$$

Decoding: $f(\vec{x})=\sum_{i} \alpha_{i} y_{i} K\left(\overrightarrow{x_{i}}, \vec{x}\right)+b$

Need to calculate $K(x, z)$.
For some kernels, no need to represent x as a feature vector.

A tree kernel

b) $\mathrm{NP} \quad \mathrm{NP} \quad \mathrm{D} \quad \mathrm{N} \quad \mathrm{NP} \quad \mathrm{NP}$

Common kernel functions

- Linear:

$$
K(\vec{x}, \vec{z})=<\vec{x}, \vec{z}>
$$

- Polynominal:

$$
K(\vec{x}, \vec{z})=(\gamma<\vec{x}, \vec{z}>+c)^{d}
$$

- Radial basis function (RBF): $K(\vec{x}, \vec{z})=e^{-\gamma(\|\vec{x}-\vec{z}\|)^{2}}$
- Sigmoid: $K(\vec{x}, \vec{z})=\tanh (\gamma<\vec{x}, \vec{z}>+c)$

$$
\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

For the tanh function, see https://www.youtube.com/watch?v=er_tQOBgo-I

$$
\begin{gathered}
\|\vec{x}-\vec{z}\| \\
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \\
\vec{x}-\vec{z}=\left(x_{1}-z_{1}, \ldots, x_{n}-z_{n}\right) \\
\|\vec{x}-\vec{z}\|=\sqrt{\left(x_{1}-z_{1}\right)^{2}+\ldots+\left(x_{n}-z_{n}\right)^{2}}
\end{gathered}
$$

Polynomial kernel

- It allows us to model feature conjunctions (up to the order of the polynomial).
- Ex:
- Original feature: single words
- Quadratic kernel: word pairs, e.g., "ethnic" and "cleansing", "Jordan" and "Chicago"

Other kernels

- Kernels for
- trees
- sequences
- sets
- graphs
- general structures
- ...
- A tree kernel example in reading \#3

The choice of kernel function

- Given a function, we can test whether it is a kernel function by using Mercer's theorem (see "Additional slides").
- Different kernel functions could lead to very different results.
- Need some prior knowledge in order to choose a good kernel.

Summary so far

- Find the hyperplane that maximizes the margin.
- Introduce soft margin to deal with noisy data
- Implicitly map the data to a higher dimensional space to deal with non-linear problems.
- The kernel trick allows infinite number of features and efficient computation of the dot product in the feature space.
- The choice of the kernel function is important.

MaxEnt vs. SVM

	MaxEnt	SVM
Modeling	Maximize $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}, \lambda)$	Maximize the margin
Training	Learn λ_{i} for each feature function	Learn α_{i} for each training instance and b
Decoding	Calculate $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$	Calculate the sign of $\mathrm{f}(\mathrm{x})$. It is not prob
Things to decide	Features	Kernel
Regularization	Regularization	
Training algorithm	Binarization	

More info

- Website: www.kernel-machines.org
- Textbook (2000): www.support-vector.net
- Tutorials: http://www.svms.org/tutorials/
- Workshops at NIPS

Additional slides

Linear kernel

- The map ϕ is linear.

$$
\begin{aligned}
\phi(x)= & \left(a_{1} x_{1}, a_{2} x_{2}, \ldots, a_{n} x_{n}\right) \\
K(x, z) & =<\phi(x), \phi(z)> \\
& =a_{1}^{2} x_{1} z_{1}+a_{2}^{2} x_{2} z_{2}+\ldots+a_{n}^{2} x_{n} z_{n}
\end{aligned}
$$

- The kernel adjusts the weight of the features according to their importance.

The Kernel Matrix (a.k.a. the Gram matrix)

$\mathrm{K}(1,1)$	$\mathrm{K}(1,2)$	$\mathrm{K}(1,3)$	\ldots	$\mathrm{K}(1, \mathrm{~m})$
$\mathrm{K}(2,1)$	$\mathrm{K}(2,2)$	$\mathrm{K}(2,3)$	\ldots	$\mathrm{K}(2, \mathrm{~m})$
\ldots				
\ldots				
$\mathrm{K}(m, 1)$	$\mathrm{K}(m, 2)$	$\mathrm{K}(m, 3)$	\ldots	$\mathrm{K}(m, m)$

$\mathrm{K}(\mathrm{i}, \mathrm{j})$ means $\mathrm{K}\left(x_{i}, x_{j}\right)$,
where x_{i} means the i -th training instance.

Mercer's Theorem

- The kernel matrix is symmetric positive definite.
- Any symmetric, positive definite matrix can be regarded as a kernel matrix; that is, there exists a ϕ such that $K(x, z)=\langle\phi(x), \phi(z)>$

Making kernels

- The set of kernels is closed under some operations. For instance, if K_{1} and K_{2} are kernels, so are the following:
$-\mathrm{K}_{1}+\mathrm{K}_{2}$
$-\mathrm{cK}_{1}$ and cK_{2} for $\mathrm{c}>0$
$-c K_{1}+\mathrm{dK}_{2}$ for $\mathrm{c}>0$ and $\mathrm{d}>0$
- One can make complicated kernels from simples ones

