Information theory

LING 572
Fel Xia



Information theory
 Reading: M&S 2.2

 Itis the use of probability theory to quantify and measure
“information”.

« Basic concepts:
— Entropy
— Cross entropy and relative entropy
— Joint entropy and conditional entropy
— Entropy of the language and perplexity
— Mutual information



Entropy

Entropy is a measure of the uncertainty associated with a
distribution.
H(X) =~ p(x)log p(x)
X
Here, X Is a random variable, X is a possible outcome of X.

The lower bound on the number of bits that it takes to
transmit messages.

An example:
— Display the results of a 8-horse race.

— Goal: minimize the number of bits to encode the results.
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An example

 Uniform distribution: p.=1/8.
H(X) :—Z p(x)log p(x) :—8*(% log, %) =3 bits

« Non-uniform distribution: (1/2, 1/4, 1/8, 1/16,
1/64, 1/64, 1/64, 1/64)

1 1 1 1 1 1 1 1 1 1 .
H(X)=—(=log—+—log—+=log—+—log— +4*—log—) = 2 bits
(X) (2 g2 4 g4 8 g8 16 g16 64 g64)

(0, 10, 110, 1110, 111100, 111101, 111110, 111111)

=>» Uniform distribution has a higher entropy.
= MaxEnt: make the distribution as “uniform” as possible. 4



Cross Entropy
* Entropy: H(X) = _Z p(x) log p(x)
» Cross Entropy: H_(X) = _Z p(x)log g(x)

Here, p(x) is the true probability;
g(x) is our estimate of p(x).

H (X) = H(X)



Relative Entropy

« Also called Kullback-Leibler divergence:

KL _ | ZEZH X)— H (X
(plla)=>_ p(x)log 10 c(X)=H(X)

« A “distance” measure between probability functions p

and qg; the closer p(x) and q(x) are, the smaller the
relative entropy Is.

« KL divergence is asymmetric, so it is not a proper

distance metric: KL(p,q) = KL(g, p)



Joint and conditional entropy

 Joint entropy:
H (X 1Y) = _ZZ p(X, y) |Og p(X, y)
X oy

« Conditional entropy:
H(Y [ X)=H(X,Y)-H(X)



Entropy of a language (per-word entropy)

« The entropy of a language L.

> p(x,)log p(x,,)
H(L, p)=—lim=2=

N—oo n

 If we make certain assumptions that the language is
“nice”, then the cross entropy can be calculated as:
(Shannon-Breiman-Mcmillan Theorem)

H(L, p) = —1lim1°9P(w) _ 10g p(X,,)

N—o0 n n




Per-word entropy (cont)

* pP(X4,) can be calculated by n-gram
models

* EX: unigram model

p(z1n) =1, p(2:)

log p($1n) = Z,L log p(.:r;z)



Perplexity

Perplexity PP(x,,) is 2HLp),

Perplexity is the weighted average number of
choices a random variable has to make.

Perplexity Is often used to evaluate a language
model; lower perplexity is preferred.
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Mutual information

It measures how much Is In common
between X and Y:

. p(X, y)
1(X:Y)= W
(%:Y) Z; P y)leg pP(X) p(y)

=H(X)+H(Y)-H(X,Y)
=1(Y; X)
=H(X)-H(X]Y)
=H({)-H{ [X)

* 10XY) = KL(p(x.y) [l p(x)p(y) )

« |f Xand Y are independent, I(X;Y) is O.
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Summary on Information theory
 Reading: M&S 2.2

 Itis the use of probability theory to quantify and measure
“information”.

« Basic concepts:
— Entropy
— Cross entropy and relative entropy
— Joint entropy and conditional entropy
— Entropy of the language and perplexity

— Mutual information
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Additional slides

13



Conditional entropy
H(Y | X)
=3 pOH(Y | X =)
= —Z p(x)>_ p(y|x)log p(y|x)
= —;Z p(>y<, y)log p(y | x)
= —Zzy: p(x,y)log p(x, y)/ p(x)
= —ZZyj p(x, y)(log p(x, y) —log p(x))
— _lezy: p(x, y)log p(x, y)+ZX:Z p(x, y)log p(x)
= ijzyjyp(x, y)log p(x, ) +2 p(yX) log p(x)

=H(X,Y)-H(X)
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Mutual information

p(x, y)

1(X;Y) |
(X¥)=2. 2, peylog s

—ZZ p(x, y)log p(x,y)-)>_ > p(x,y)log p(x)->_ > p(x, y)log p(y)

=H(X,Y)=log p(x)Y" p(x, y)- Y log p(y)>" p(x, y)
=H(X,Y)-)_(log p(x))p(x) - (log p(y)) p(y)

—H(X)+H(Y)=H(X,Y)
~1(Y:X)
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