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Information theory

• Reading: M&S 2.2

• It is the use of probability theory to quantify and measure 

“information”.

• Basic concepts:

– Entropy

– Cross entropy and relative entropy

– Joint entropy and conditional entropy

– Entropy of the language and perplexity

– Mutual information 
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Entropy

• Entropy is a measure of the uncertainty associated with a 
distribution.

Here, X is a random variable, x is a possible outcome of X.

• The lower bound on the number of bits that it takes to 
transmit messages.

• An example: 

– Display the results of a 8-horse race. 

– Goal: minimize the number of bits to encode the results.
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An example

• Uniform distribution: pi=1/8. 

• Non-uniform distribution: (1/2, 1/4, 1/8, 1/16, 

1/64, 1/64, 1/64, 1/64)
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Uniform distribution has a higher entropy.

MaxEnt: make the distribution as “uniform” as possible. 4



Cross Entropy

• Entropy:

• Cross Entropy:

Here, p(x) is the true probability; 

q(x) is our estimate of p(x).
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Relative Entropy

• Also called Kullback-Leibler divergence:

• A “distance” measure between probability functions p 

and q; the closer p(x) and q(x) are, the smaller the 

relative entropy is.

• KL divergence is asymmetric, so it is not a proper 

distance metric: 
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Joint and conditional entropy

• Joint entropy:

• Conditional entropy:
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Entropy of a language (per-word entropy)

• The entropy of a language L: 

• If we make certain assumptions that the language is 

“nice”, then the cross entropy can be calculated as: 

(Shannon-Breiman-Mcmillan Theorem)
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Per-word entropy (cont)

• p(x1n)  can be calculated by n-gram 

models

• Ex: unigram model

9



Perplexity

• Perplexity PP(x1n) is 2H(L,p).

• Perplexity is the weighted average number of 

choices a random variable has to make.

• Perplexity is often used to evaluate a language 

model; lower perplexity is preferred.
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Mutual information

• It measures how much is in common 
between X and Y:

• I(X;Y) = KL( p(x,y) || p(x)p(y) )

• If X and Y are independent, I(X;Y) is 0.
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Summary on Information theory

• Reading: M&S 2.2

• It is the use of probability theory to quantify and measure 

“information”.

• Basic concepts:

– Entropy

– Cross entropy and relative entropy

– Joint entropy and conditional entropy

– Entropy of the language and perplexity

– Mutual information 
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Additional slides
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Conditional entropy
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Mutual information
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