Final review

LING572 Fei Xia

Topics covered

- Supervised learning: seven algorithms
 - kNN, NB: training and decoding
 - DT, TBL: training and decoding (with binary features)
 - MaxEnt: training (GIS) and decoding
 - SVM: decoding, tree kernel

- CRF**

• Semi-supervised learning

Other topics

- From LING570:
 - Introduction to classification task
 - Mallet
 - Beam search
- Information theory: entropy, KL divergence, info gain
- Feature selection: e.g., chi-square, feature frequency
- Multi-class to binary conversion: e.g., one-vs-all, all-pairs
- Sequence labeling problem
- Reranking

Assignments

- Hw1: Probability and Info theory
- Hw2: Decision tree
- Hw3: Naïve Bayes
- Hw4: kNN and chi-square
- Hw5: MaxEnt decoder
- Hw6: Beam search
- Hw7: TBL trainer and decoder
- Hw8: SVM decoder
- Hw9: Neural Network

Main steps for solving a classification task

- Formulate the problem
- Define features
- Prepare training and test data
- Select ML learners
- Implement the learner
- Run the learner
 - Tune parameters on the dev data
 - Error analysis
 - Conclusion

Learning algorithms

Generative vs. discriminative models

- Joint (generative) models estimate P(x,y) by maximizing the likelihood: P(X,Y|µ)
 - Ex: n-gram models, HMM, Naïve Bayes, PCFG
 - Training is trivial: just use relative frequencies.
- Conditional (discriminative) models estimate P(y|x) by maximizing the conditional likelihood: P(Y|X, μ)
 - Ex: MaxEnt, SVM, CRF, etc.
 - Training is harder

Parametric vs. non-parametric models

- Parametric model:
 - The number of parameters do not change w.r.t.
 the number of training instances
 - Ex: NB, MaxEnt, linear SVM
- Non-parametric model:
 - More examples could potentially mean more complex classifiers.
 - Ex: kNN, non-linear SVM

Feature-based vs. kernel-based

- Feature-based:
 - Representing x as a feature vector
 - Need to define features
 - Ex: DT, NB, MaxEnt, TBL, CRF, ...
- Kernel-based:
 - Calculating similarity between two objects
 - Need to define similarity/kernel function
 - Ex: kNN, SVM

DT and TBL

- DT:
 - Training: build the tree
 - Testing: traverse the tree
- TBL:
 - Training: create a transformation list
 - Testing: go through the list
- Both use the greedy approach:
 - DT chooses the split that maximizes info gain, etc.
 - TBL chooses the transformation that reduces the errors the most.

NB and MaxEnt

- NB:
 - Training: estimate P(c) and P(f | c)
 - Testing: calculate P(y) P(x | y)
- MaxEnt:
 - Training: estimate the weight for each (f, c)
 - Testing: calculate P(y | x)
- Differences:
 - generative vs. discriminative models
 - MaxEnt does not assume features are conditionally independent

kNN and SVM

- Both work with data through "similarity" functions between vectors.
- kNN:
 - Training: Nothing
 - Testing: Find the nearest neighbors
- SVM
 - Training: Estimate the weights of training instances ightarrow w and b
 - Testing: Calculating f(x), which uses all the SVs

MaxEnt and SVM

- Both are discriminative models.
- Start with an objective function and find the solution to an optimization problem by using
 - Lagrangian, the dual problem, etc.
 - Iterative approach: e.g., GIS
 - Quadratic programming
 - ➔ numerical optimization

HMM, MaxEnt and CRF

- linear-chain CRF is like HMM + MaxEnt
 - Training is similar to training for MaxEnt
 - Decoding is similar to Viterbi for HMM decoding
 - Features are similar to the ones for MaxEnt

Comparison of three learners

	Naïve Bayes	MaxEnt	SVM
Modeling	Maximize P(X,Y θ)	Maximize P(Y X, θ)	Maximize the minimal margin
Training	Learn P(c) and P(f c)	Learn λ_i for feature function	Learn $lpha_i$ for each (x _i , y _i)
Decoding	Calc P(y) P(x y)	Calc P(y x)	Calc f(x)
Things to decide	Features	Features	Kernel function
	Delta for smoothing	Regularization	Regularization
		Training algorithm	Training algorithm
			C for penalty

Questions for each method

- Modeling:
 - what is the model?
 - How does the decomposition work?
 - What kind of assumption is made?
 - How many model parameters?
 - How many "tuned" (or non-model) parameters?
 - How to handle multi-class problem?
 - How to handle non-binary features?

— ...

Questions for each method (cont)

- Training: how to estimate parameters?
- Decoding: how to find the "best" solution?
- Weaknesses and strengths?
 - parametric?
 - generative/discriminative?
 - performance?
 - robust? (e.g., handling outliners)
 - prone to overfitting?
 - scalable?
 - efficient in training time? Test time?

Implementation issues

Implementation issue

- Take the log: $log P(X_1, ..., X_n) = log \prod_i P(X_i | X_1, ..., X_{i-1})$ = $\sum_i log P(X_i | X_1, ..., X_{i-1})$
- Ignore some constants:

$$P(d_i|c) = P(|d_i|)|d_i|! \prod_{k=1}^{|V|} \frac{P(w_k|c)^{N_{ik}}}{N_{ik}!}$$

Increase small numbers before dividing

$$P(c1|x) = \frac{P(x,c1)}{P(x)} = \frac{P(x,c1)}{P(x,c1) + P(x,c2) + \dots}$$

$$logP(x,c_1) \text{ is -200, } logP(x,c_2) \text{ is -201.}$$

Implementation issue (cont)

• Reformulate the formulas: e.g., Naïve Bayes

$$P(x,c) = P(c) \prod_{w_k \in d_i} P(w_k|c) \prod_{w_k \notin d_i} (1 - P(w_k|c))$$
$$= P(c) \prod_{w_k \in d_i} \frac{P(w_k|c)}{1 - P(w_k|c)} \prod_{w_k} (1 - P(w_k|c))$$

Store the useful intermediate results

 \mathbf{D}

)

$$\prod_{w_k} (1 - P(w_k|c))$$

An example: calculating model expectation in MaxEnt

$$E_{p}f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

for each instance x calculate P(y|x) for every $y \in Y$ for each feature t in x for each $y \in Y$ model_expect [t] [y] += 1/N * P(y|x)

Another example: Finding the best transformation (Hw7)

Conceptually

for each possible transformation go through the data and calculate the net gain

• In practice

go through the data and calculate the net gain of all applicable transformations

More advanced techniques

• In each iteration

calculate net gain for each transformation choose the best transformation and apply it

 Calculate net gain for each transformation in each iteration

choose the best transformation and apply it update net gain for each transformation

What's next?

What's next?

- Course evaluation:
 - For Fei: top of the syllabus page, open 3/8-3/15
 - For Leanne: you should have received an email
 - Please fill out both.

• Hw9: Due 11pm on 3/15

What's next (beyond ling572)?

- Supervised learning:
 - Covered algorithms: e.g., L-BFGS for MaxEnt, training for SVM, math proof
 - Other algorithms: e.g., Graphical models,
 Bayesian network
- Using algorithms:
 - Formulate the problem
 - Select features
 - Choose/compare ML algorithms

What's next? (cont)

- Semi-supervised learning:
 - LU: labeled data and unlabeled data
 - PU: labeled positive data and unlabeled data

• Unsupervised learning

• Using them for real applications: LING573

• Machine learning, AI, etc.