K nearest neighbor

LING 572 Fei Xia

The term "weight" in ML

• Weights of features

• Weights of instances

• Weights of classifiers

The term "binary" in ML

- Classification problem:
 - Binary: the number of classes is 2
 - Multi-class: the number is classes is > 2
- Features:
 - Binary: the number of possible feature values is 2.
 - Real-valued: the feature values are real numbers
- File format:
 - Binary: human un-readable
 - Text: human readable

kNN

Instance-based (IB) learning

- No training: store all training instances.
 - → "Lazy learning"
- Examples:
 - kNN
 - Locally weighted regression
 - Case-based reasoning

— ...

• The most well-known IB method: kNN

kNN

kNN

- Training: record labeled instances as feature vectors
- Test: for a new instance d,
 - find k training instances that are closest to d.
 - perform majority voting or weighted voting.
- Properties:
 - A "lazy" classifier. No learning in the training stage.
 - Feature selection and distance measure are crucial.

The algorithm

- Determine parameter K
- Calculate the distance between the test instance and all the training instances
- Sort the distances and determine K nearest neighbors
- Gather the labels of the K nearest neighbors
- Use simple majority voting or weighted voting.

Issues

• What's K?

- How do we weight/scale/select features?
- How do we combine instances by voting?

Picking K

- Split the data into
 - Training data (true training data and validation data)
 - Dev data
 - Test data
- Pick k with the lowest error rate on the validation set
 use N-fold cross validation if the training data is small

Normalizing attribute values

- Distance could be dominated by some attributes with large numbers:
 - Ex: features: age, income
 - Original data: $x_1 = (35, 76K), x_2 = (36, 80K), x_3 = (70, 79K)$
- Rescale: i.e., normalize to [0,1]
 - Assume: age \in [0,100], income \in [0, 200K]
 - After normalization: $x_1 = (0.35, 0.38)$, $x_2 = (0.36, 0.40)$, $x_3 = (0.70, 0.395)$.

The Choice of Features

- Imagine there are 100 features, and only 2 of them are relevant to the target label.
- Differences in irrelevant features likely to dominate:
 - kNN is easily misled in high-dimensional space.
 - Feature weighting or feature selection is key (It will be covered next time)

Feature weighting

- Reweighting a dimension j by weight w_i
 - Can increase or decrease weight of feature on that dimension
 - Setting w_j to zero eliminates this dimension altogether.

 Use cross-validation to automatically choose weights w₁, ..., w_n

Some similarity measures

• Euclidean distance:

$$dist(d_i, d_j) = \sqrt{\sum_k (a_{i,k} - a_{j,k})^2}$$

• Weighted Euclidean distance:

$$dist(d_i, d_j) = \sqrt{\sum_k w_k (a_{i,k} - a_{j,k})^2}$$

Cosine

Voting by k-nearest neighbors

- Suppose we have found the k-nearest neighbors.
- Let $f_i(x)$ be the class label for the i-th neighbor of x.

 $\delta(c, f_i(x))$ is the identity function; that is, it is 1 if $f_i(x) = c$, and is 0 otherwise.

Let $g(c) = \sum_{i} \delta(c, f_i(x))$; that is, g(c) is the number of neighbors with label c.

Voting

- Majority voting:
 c* = arg max_c g(c)
- Weighted voting: weighting is on each neighbor $c^* = arg \max_c \sum_i w_i \, \delta(c, f_i(x))$

Where $\delta(c, f_i(x))$ is 1 if $f_i(x) = c$ and 0 otherwise

• Weighted voting allows us to use more training examples:

e.g., $w_i = 1/dist(x, x_i)$

 \rightarrow We can use all the training examples.

Summary of kNN algorithm

Decide k, feature weights, and similarity measure

- Given a test instance x
 - Calculate the distances between x and all the training data
 - Choose the k nearest neighbors
 - Let the neighbors vote

- Strengths:
 - Simplicity (conceptual)
 - Efficiency at training: no training
 - Handling multi-class
 - Stability and robustness: averaging k neighbors
 - Predication accuracy: when the training data is large
- Weakness:
 - Efficiency at testing time: need to calculate all distances
 - Better search algorithms: e.g., use k-d trees
 - Reduce the amount of training data used at the test time: e.g., Rocchio algorithm
 - Sensitivity to irrelevant or redundant features
 - Distance metrics unclear on non-numerical/binary values