K nearest neighbor

LING 572
 Fei Xia

The term "weight" in ML

- Weights of features
- Weights of instances
- Weights of classifiers

The term "binary" in ML

- Classification problem:
- Binary: the number of classes is 2
- Multi-class: the number is classes is >2
- Features:
- Binary: the number of possible feature values is 2.
- Real-valued: the feature values are real numbers
- File format:
- Binary: human un-readable
- Text: human readable

kNN

Instance-based (IB) learning

- No training: store all training instances.
\rightarrow "Lazy learning"
- Examples:
- kNN
- Locally weighted regression
- Case-based reasoning
- The most well-known IB method: kNN

kNN

kNN

- Training: record labeled instances as feature vectors
- Test: for a new instance d,
- find k training instances that are closest to d.
- perform majority voting or weighted voting.
- Properties:
- A "lazy" classifier. No learning in the training stage.
- Feature selection and distance measure are crucial.

The algorithm

- Determine parameter K
- Calculate the distance between the test instance and all the training instances
- Sort the distances and determine K nearest neighbors
- Gather the labels of the K nearest neighbors
- Use simple majority voting or weighted voting.

Issues

- What's K?
- How do we weight/scale/select features?
- How do we combine instances by voting?

Picking K

- Split the data into
- Training data (true training data and validation data)
- Dev data
- Test data
- Pick k with the lowest error rate on the validation set
- use N -fold cross validation if the training data is small

Normalizing attribute values

- Distance could be dominated by some attributes with large numbers:
- Ex: features: age, income
- Original data: $x_{1}=(35,76 K), x_{2}=(36,80 K), x_{3}=(70,79 K)$
- Rescale: i.e., normalize to $[0,1]$
- Assume: age $\in[0,100]$, income $\in[0,200 \mathrm{~K}]$
- After normalization: $x_{1}=(0.35,0.38)$,

$$
x_{2}=(0.36,0.40), x_{3}=(0.70,0.395)
$$

The Choice of Features

- Imagine there are 100 features, and only 2 of them are relevant to the target label.
- Differences in irrelevant features likely to dominate:
- kNN is easily misled in high-dimensional space.
- Feature weighting or feature selection is key (It will be covered next time)

Feature weighting

- Reweighting a dimension j by weight w_{j}
- Can increase or decrease weight of feature on that dimension
- Setting w_{j} to zero eliminates this dimension altogether.
- Use cross-validation to automatically choose weights $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$

Some similarity measures

- Euclidean distance:

$$
\operatorname{dist}\left(d_{i}, d_{j}\right)=\sqrt{\sum_{k}\left(a_{i, k}-a_{j, k}\right)^{2}}
$$

- Weighted Euclidean distance:

$$
\operatorname{dist}\left(d_{i}, d_{j}\right)=\sqrt{\sum_{k} w_{k}\left(a_{i, k}-a_{j, k}\right)^{2}}
$$

- Cosine

$$
\cos \left(d_{i}, d_{j}\right)=\frac{\sum_{k} a_{i, k} a_{j, k}}{\sqrt{\sum_{k} a_{i, k}^{2}} \sqrt{\sum_{k} a_{j, k}^{2}}}
$$

Voting by k-nearest neighbors

- Suppose we have found the k-nearest neighbors.
- Let $f_{i}(x)$ be the class label for the i-th neighbor of x.
$\delta\left(\mathrm{c}, \mathrm{f}_{\mathrm{i}}(\mathrm{x})\right)$ is the identity function; that is, it is 1 if $f_{i}(x)=c$, and is 0 otherwise.

Let $\mathrm{g}(\mathrm{c})=\sum_{\delta} \delta\left(\mathrm{c}, \mathrm{f}_{\mathrm{i}}(\mathrm{x})\right)$; that is, $\mathrm{g}(\mathrm{c})$ is the number of neighbors with label c .

Voting

- Majority voting:

$$
c^{*}=\arg \max _{\mathrm{c}} \mathrm{~g}(\mathrm{c})
$$

- Weighted voting: weighting is on each neighbor $\mathrm{c}^{*}=\arg \max _{\mathrm{c}} \sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \delta\left(\mathrm{c}, \mathrm{f}_{\mathrm{i}}(\mathrm{x})\right.$)

Where $\delta\left(c, f_{i}(x)\right)$ is 1 if $f_{i}(x)=c$ and 0 otherwise

- Weighted voting allows us to use more training examples:
e.g., $w_{i}=1 / \operatorname{dist}\left(x, x_{i}\right)$
\rightarrow We can use all the training examples.

Summary of kNN algorithm

- Decide k, feature weights, and similarity measure
- Given a test instance x
- Calculate the distances between x and all the training data
- Choose the k nearest neighbors
- Let the neighbors vote
- Strengths:
- Simplicity (conceptual)
- Efficiency at training: no training
- Handling multi-class
- Stability and robustness: averaging k neighbors
- Predication accuracy: when the training data is large
- Weakness:
- Efficiency at testing time: need to calculate all distances
- Better search algorithms: e.g., use k-d trees
- Reduce the amount of training data used at the test time: e.g., Rocchio algorithm
- Sensitivity to irrelevant or redundant features
- Distance metrics unclear on non-numerical/binary values

