Feature selection

LING 572

Fei Xia
Creating attribute-value table

<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>...</th>
<th>f_K</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Choose features:
 – Define feature templates
 – Instantiate the feature templates
 – Dimensionality reduction: feature selection

• Feature weighting
 – Global feature weighting: weight the whole column
 – Local feature weighting: weight for a cell
Feature Selection Example

• Task: Text classification

• Feature template definition:
 – Word – just one template

• Feature instantiation:
 – Words from training data

• Feature selection:
 – Stopword removal: remove top K (~100) highest freq
 • Words like: the, a, have, is, to, for,…

• Feature weighting:
 – Apply tf*idf feature weighting
 • tf = term frequency; idf = inverse document frequency
The Curse of Dimensionality

- Think of the instances as vectors of features
 - # of features = # of dimensions

- Number of features potentially enormous
 - e.g., # words in corpus continues to increase w/corpus size

- High dimensionality problematic:
 - Leads to difficulty with estimation/learning
 - Hard to create valid model
 - Hard to predict and generalize – think kNN
 - More dimensions \(\rightarrow \) more samples needed to learn model
 - Leads to high computational cost
Breaking the Curse

• Dimensionality reduction:
 – Produce a representation with fewer dimensions
 • But with comparable performance

 – More formally, given an original feature set r,
 • Create a new set r' $|r'| < |r|$, with comparable performance
Outline

• Dimensionality reduction

• Some scoring functions **

• Chi-square score and Chi-square test

In this lecture, we will use “term” and “feature” interchangeably.
Dimensionality reduction (DR)
Dimensionality reduction (DR)

• What is DR?
 – Given a feature set r, create a new set r’, s.t.
 • r’ is much smaller than r, and
 • the classification performance does not suffer too much.

• Why DR?
 – ML algorithms do not scale well.
 – DR can reduce overfitting.
Dimensionality Reduction

• Given an initial feature set r,
 – Create a feature set r' such that $|r| < |r'|$

• Approaches:
 – r': same for all classes (a.k.a. global), vs
 – r': different for each class (a.k.a. local)

 – Feature selection/filtering
 – Feature mapping (a.k.a. extraction)
Feature Selection

• Feature selection:
 – r’ is a subset of r
 – How can we pick features?
 • Extrinsic ‘wrapper’ approaches:
 – For each subset of features:
 » Build, evaluate classifier for some task
 – Pick subset of features with best performance

• Intrinsic ‘filtering’ methods:
 – Use some intrinsic (statistical?) measure
 – Pick features with highest scores
Feature Selection

• Wrapper approach:
 – Pros:
 • Easy to understand, implement
 • Clear relationship between selected features and task performance.
 – Cons:
 • Computationally intractable: $2^{|r|} \times (\text{training} + \text{testing})$
 • Specific to task, classifier

• Filtering approach:
 – Pros: theoretical basis, less task, classifier specific
 – Cons: Doesn’t always boost task performance
Feature selection by filtering

• Main idea: rank features according to predetermined numerical functions that measure the “importance” of the terms.

• It is fast and classifier-independent.

• Scoring functions:
 – Information Gain
 – Mutual information
 – chi square
 – …
Feature Mapping

• Feature mapping (extraction) approaches
 – \(r' \) represents combinations/transformations of features in \(r \)
 • Ex: many words near-synonyms, but treated as unrelated
 • Map to new concept representing all
 – big, large, huge, gigantic, enormous \(\rightarrow \) concept of ‘bigness’
 – Examples:
 • Term classes: e.g. class-based n-grams
 – Derived from term clusters
 • Latent Semantic Analysis (LSA/LSI)
 – Result of Singular Value Decomposition (SVD) on matrix
 produces ‘closest’ rank \(r' \) approximation of original
Feature Mapping

• Pros:
 – Data-driven
 – Theoretical basis – guarantees on matrix similarity
 – Not bound by initial feature space

• Cons:
 – Some ad-hoc factors:
 • e.g., # of dimensions
 – Resulting feature space can be hard to interpret
Quick summary so far

• DR: to reduce the number of features
 – Local DR vs. global DR
 – Feature extraction vs. feature selection

• Feature extraction:
 – Feature clustering
 – Latent semantic indexing (LSI)

• Feature selection:
 – Wrapping method
 – Filtering method: different functions
Feature scoring measures
Basic Notation, Distributions

- Assume binary representation of terms, classes
 - \(t_k \): term in \(T \); \(c_i \): class in \(C \)

- \(P(t_k) \): proportion of documents in which \(t_k \) appears
- \(P(c_i) \): proportion of documents of class \(c_i \)
 - Binary so have
 \[
 P(\overline{t_k}), P(\overline{c_i})
 \]
 \[
 P(t_k, c_i), P(\overline{t_k}, c_i), \text{etc}....
 \]
Calculating basic distributions

<table>
<thead>
<tr>
<th></th>
<th>(\bar{c}_i)</th>
<th>(c_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_k)</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>(t_k)</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

\[
P(t_k, c_i) = \frac{d}{N}
\]

\[
P(t_k) = \frac{(c + d)}{N}, \quad P(c_i) = \frac{(b + d)}{N}
\]

\[
P(t_k|c_i) = \frac{d}{(b + d)}
\]

where \(N = a + b + c + d \)
Feature selection functions

• Question: What makes a good feature?

• Intuition: for a category c_i, the most valuable feature are those that are distributed most differently in the sets of positive and negative examples of c_i.
Term Selection Functions: DF

• Document frequency (DF):
 – Number of documents in which t_k appears

• Applying DF:
 – Remove terms with DF below some threshold

• Intuition:
 – Very rare terms won’t help with categorization
 • or not useful globally

• Pros: Easy to implement, scalable

• Cons: Ad-hoc, low DF terms ‘topical’
Term Selection Functions: MI

• Pointwise Mutual Information (MI)

\[MI(t_k, c_i) = \log \frac{P(t_k, c_i)}{P(t_k)P(c_i)} \]

• MI(t,c)=0 if t and c are independent

• Issue: Can be heavily influenced by marginal probability
 – Problem comparing terms of differing frequencies
Term Selection Functions: IG

• Information Gain:
 – Intuition: Transmitting Y, how many bits can we save if both sides know X?

 \[IG(Y, X) = H(Y) - H(Y|X) \]

 \[IG(t_k, c_i) = P(t_k, c_i) \log \frac{P(t_k, c_i)}{P(t_k)P(c_i)} + P(\bar{t}_k, c_i) \log \frac{P(\bar{t}_k, c_i)}{P(\bar{t}_k)P(c_i)} \]
Global Selection

• Previous measures compute class-specific selection
• What if you want to filter across ALL classes?
 – an aggregate measure across classes

 • Sum:
 \[f_{\text{sum}}(t_k) = \sum_{i=1}^{|C|} f(t_k, c_i) \]

 • Average:
 \[f_{\text{avg}}(t_k) = \sum_{i=1}^{|C|} f(t_k, c_i) P(c_i) \]

 • Max:
 \[f_{\text{max}}(t_k) = \max_{i=1}^{|C|} f(t_k, c_i) P(c_i) \]

|C| is the number of classes
Which function works the best?

• It depends on
 – Classifiers
 – Type of data
 – ...

• According to (Yang and Pedersen 1997):

\[
\{OR, NGL, GSS\} > \{\chi^2_{max}, IG_{sum}\} > \{#_{avg}\} >> \{MI\}
\]
Feature weighting
Feature weights

• Feature weight $\in \{0, 1\}$: same as DR

• Feature weight $\in \mathbb{R}$: iterative approach:
 – Ex: MaxEnt

→ Feature selection is a special case of feature weighting.
Feature values

- Binary features: 0 or 1.

- Term frequency (TF): the number of times that t_k appears in d_i.

- Inversed document frequency (IDF): $\log |D| / d_k$, where d_k is the number of documents that contain t_k.

- TFIDF = $TF \times IDF$

- Normalized TFIDF:

$$w_{ik} = \frac{tfidf(d_i, t_k)}{Z}$$
Summary so far

- Curse of dimensionality \rightarrow dimensionality reduction (DR)

- DR:
 - Feature extraction
 - Feature selection
 - Wrapping method
 - Filtering method: different functions
Summary (cont)

• Functions:
 – Document frequency
 – Information gain
 – Gain ratio
 – Chi square
 – …
Additional slides
Information gain

\[\sum_i IG(t_k, c_i) \]

\[= \sum_{c \in C} \sum_{t \in \{t_k, \tilde{t}_k\}} P(t, c) \log \frac{P(t, c)}{P(c)P(t)} \]

\[= \sum_{c \in C} \sum_t P(t, c) \log P(c | t) \]

\[- \sum_{c} \sum_{t} P(t, c) \log P(c) \]

\[= -H(C | T) - \sum_c ((\log P(c)) \sum_{t} P(t, c)) \]

\[= -H(C | T) + H(C) = IG(C, T) \]
More term selection functions**

Relevancy score:
\[RS(t_k, c_i) = \log \frac{P(t_k | c_i) + d}{P(t_k | \overline{c_i}) + d} \]

Odds Ratio:
\[OR(t_k, c_i) = \frac{P(t_k | c_i) P(t_k | \overline{c_i})}{P(t_k | c_i) P(t_k | \overline{c_i})} \]
More term selection functions**

GSS coefficient:

\[GSS(t_k, c_i) = P(t_k, c_i)P(t_k, \bar{c}_i) - P(t_k, \bar{c}_i)P(t_k, c_i) \]

NGL coefficient: N is the total number of docs

\[NGL(t_k, c_i) = \frac{\sqrt{N} \cdot GSS(t_k, c_i)}{\sqrt{P(t_k)P(t_k)c_iP(c_i)P(\bar{c}_i)}} \]

Chi-square: (one of the definitions)

\[\chi^2(t_k, c_i) = NGL(t_k, c_i)^2 = \frac{(ad-bc)^2N}{(a+b)(a+c)(b+d)(c+d)} \]