Feature selection

LING 572 Fei Xia

Creating attribute-value table

- Choose features:
 - Define feature templates
 - Instantiate the feature templates
 - Dimensionality reduction: feature selection
- Feature weighting
 - Global feature weighting: weight the whole column
 - Local feature weighting: weight for a cell

Feature Selection Example

- Task: Text classification
- Feature template definition:
 - Word just one template
- Feature instantiation:
 - Words from training data
- Feature selection:
 - Stopword removal: remove top K (~100) highest freq
 - Words like: the, a, have, is, to, for,...
- Feature weighting:
 - Apply tf*idf feature weighting
 - tf = term frequency; idf = inverse document frequency

The Curse of Dimensionality

- Think of the instances as vectors of features
 - # of features = # of dimensions
- Number of features potentially enormous
 - e.g., # words in corpus continues to increase w/corpus size
- High dimensionality problematic:
 - Leads to difficulty with estimation/learning
 - Hard to create valid model
 - Hard to predict and generalize think kNN
 - More dimensions \rightarrow more samples needed to learn model
 - Leads to high computational cost

Breaking the Curse

- Dimensionality reduction:
 - Produce a representation with fewer dimensions
 - But with comparable performance
 - More formally, given an original feature set r,
 - Create a new set r' |r'| < |r|, with comparable performance

Outline

- Dimensionality reduction
- Some scoring functions **
- Chi-square score and Chi-square test

In this lecture, we will use "term" and "feature" interchangeably.

Dimensionality reduction (DR)

Dimensionality reduction (DR)

- What is DR?
 - Given a feature set r, create a new set r', s.t.
 - r' is much smaller than r, and
 - the classification performance does not suffer too much.
- Why DR?
 - ML algorithms do not scale well.
 - DR can reduce overfitting.

Dimensionality Reduction

- Given an initial feature set r,
 - Create a feature set r' such that |r| < |r'|</p>
- Approaches:
 - r': same for all classes (a.k.a. global), vs
 - r': different for each class (a.k.a. local)
 - Feature selection/filtering
 - Feature mapping (a.k.a. extraction)

Feature Selection

- Feature selection:
 - r' is a subset of r
 - How can we pick features?
 - Extrinsic 'wrapper' approaches:
 - For each subset of features:
 - » Build, evaluate classifier for some task
 - Pick subset of features with best performance
 - Intrinsic 'filtering' methods:
 - Use some intrinsic (statistical?) measure
 - Pick features with highest scores

Feature Selection

- Wrapper approach:
 - Pros:
 - Easy to understand, implement
 - Clear relationship between selected features and task performance.
 - Cons:
 - Computationally intractable: 2^{|r'|*}(training + testing)
 - Specific to task, classifier
- Filtering approach:
 - Pros: theoretical basis, less task, classifier specific
 - Cons: Doesn't always boost task performance

Feature selection by filtering

- Main idea: rank features according to predetermined numerical functions that measure the "importance" of the terms.
- It is fast and classifier-independent.
- Scoring functions:
 - Information Gain
 - Mutual information
 - chi square

Feature Mapping

- Feature mapping (extraction) approaches
 - r' represents combinations/transformations of features in r
 - Ex: many words near-synonyms, but treated as unrelated
 - Map to new concept representing all
 - big, large, huge, gigantic, enormous \rightarrow concept of 'bigness'
 - Examples:
 - Term classes: e.g. class-based n-grams
 - Derived from term clusters
 - Latent Semantic Analysis (LSA/LSI)
 - Result of Singular Value Decomposition (SVD) on matrix produces 'closest' rank r' approximation of original

Feature Mapping

- Pros:
 - Data-driven
 - Theoretical basis guarantees on matrix similarity
 - Not bound by initial feature space
- Cons:
 - Some ad-hoc factors:
 - e.g., # of dimensions
 - Resulting feature space can be hard to interpret

Quick summary so far

- DR: to reduce the number of features
 - Local DR vs. global DR
 - Feature extraction vs. feature selection
- Feature extraction:
 - Feature clustering
 - Latent semantic indexing (LSI)
- Feature selection:
 - Wrapping method
 - Filtering method: different functions

Feature scoring measures

Basic Notation, Distributions

- Assume binary representation of terms, classes
- t_k : term in T; c_i : class in C
- $P(t_k)$: proportion of documents in which t_k appears
- P(c_i): proportion of documents of class c_i
 - Binary so have

$$P(\overline{t}_k), P(\overline{c}_i)$$
$$P(t_k, c_i), P(\overline{t}_k, c_i), etc....$$

Calculating basic distributions

$$\begin{array}{|c|c|c|}\hline & \bar{c_i} & c_i \\ \hline t_k & \mathsf{a} & \mathsf{b} \\ \hline t_k & \mathsf{c} & \mathsf{d} \end{array}$$

$$\begin{split} P(t_k,c_i) &= d/N\\ P(t_k) &= (c+d)/N, P(c_i) = (b+d)/N\\ P(t_k|c_i) &= d/(b+d)\\ \text{where } N &= a+b+c+d \end{split}$$

Feature selection functions

• Question: What makes a good feature?

 Intuition: for a category c_i, the most valuable feature are those that are distributed most <u>differently</u> in the sets of positive and negative examples of c_i.

Term Selection Functions: DF

- Document frequency (DF):
 - Number of documents in which t_k appears
- Applying DF:
 - Remove terms with DF below some threshold
- Intuition:
 - Very rare terms won't help with categorization
 - or not useful globally
- Pros: Easy to implement, scalable
- Cons: Ad-hoc, low DF terms 'topical'

Term Selection Functions: MI

• Pointwise Mutual Information (MI)

$$MI(t_k, c_i) = \log \frac{P(t_k, c_i)}{P(t_k)P(c_i)}$$

- MI(t,c)=0 if t and c are independent
- Issue: Can be heavily influenced by marginal probability
 Problem comparing terms of differing frequencies

Term Selection Functions: IG

- Information Gain:
 - Intuition: Transmitting Y, how many bits can we save if both sides know X?

$$-IG(Y,X) = H(Y)-H(Y|X)$$

$$IG(t_k, c_i) = P(t_k, c_i) \log \frac{P(t_k, c_i)}{P(t_k)P(c_i)} + P(\overline{t_k}, c_i) \log \frac{P(\overline{t_k}, c_i)}{P(\overline{t_k})P(c_i)}$$

Global Selection

- Previous measures compute class-specific selection
- What if you want to filter across ALL classes?
 - an aggregate measure across classes

• Sum:
$$f_{sum}(t_k) = \sum_{i=1}^{|C|} f(t_k, c_i)$$

• Average:

$$f_{avg}(t_k) = \sum_{i=1}^{|C|} f(t_k, c_i) P(c_i)$$

• Max:

$$f_{\max}(t_k) = \max_{i=1}^{|C|} f(t_k, c_i) P(c_i)$$

|C| is the number of classes

Which function works the best?

- It depends on
 - Classifiers

- . . .

- Type of data

• According to (Yang and Pedersen 1997): $\{OR, NGL, GSS\} > \{\chi^2_{max}, IG_{sum}\}$ $> \{\#_{avg}\} >> \{MI\}$

Feature weighting

Feature weights

• Feature weight \in {0,1}: same as DR

- Feature weight ∈ R: iterative approach:
 Ex: MaxEnt
- Feature selection is a special case of feature weighting.

Feature values

- Binary features: 0 or 1.
- Term frequency (TF): the number of times that t_k appears in d_i .
- Inversed document frequency (IDF): log $|D| / d_{k}$, where d_k is the number of documents that contain t_k .
- TFIDF = TF * IDF
- Normalized TFIDF: $w_{ik} = \frac{tfidf(d_i, t_k)}{Z}$

Summary so far

Curse of dimensionality → dimensionality reduction (DR)

- DR:
 - Feature extraction
 - Feature selection
 - Wrapping method
 - <u>Filtering method</u>: different functions

Summary (cont)

- Functions:
 - Document frequency
 - Information gain
 - Gain ratio

. . .

- Chi square

Additional slides

Information gain**

$$\begin{split} &\sum_{i} IG(t_{k}, c_{i}) \\ &= \sum_{c \in C} \sum_{t \in \{t_{k}, \bar{t}_{k}\}} P(t, c) \log \frac{P(t, c)}{P(c)P(t)} \\ &= \sum_{c \in C} \sum_{t} P(t, c) \log P(c|t) \\ &- \sum_{c} \sum_{t} P(t, c) \log P(c) \\ &= -H(C|T) - \sum_{c} ((\log P(c)) \sum_{t} P(t, c)) \\ &= -H(C|T) + H(C) = IG(C, T) \end{split}$$

More term selection functions**

Relevancy score:

$$RS(t_k, c_i) = log \frac{P(t_k|c_i) + d}{P(\overline{t_k}|\overline{c_i}) + d}$$

Odds Ratio: $OR(t_k, c_i) = \frac{P(t_k | c_i) P(\bar{t_k} | \bar{c_i})}{P(\bar{t_k} | c_i) P(t_k | \bar{c_i})}$

More term selection functions**

GSS coefficient: $GSS(t_k, c_i) = P(t_k, c_i) P(\bar{t_k}, \bar{c_i}) - P(t_k, \bar{c_i}) P(\bar{t_k}, c_i)$

NGL coefficient: N is the total number of docs $NGL(t_k, c_i) = \frac{\sqrt{N} GSS(t_k, c_i)}{\sqrt{P(t_k)P(\bar{t_k})P(c_i)P(\bar{c_i})}}$

Chi-square: (one of the definitions) $\chi^{2}(t_{k},c_{i}) = NGL(t_{k},c_{i})^{2} = \frac{(ad-bc)^{2}N}{(a+b)(a+c)(b+d)(c+d)}$