Chi square

Chi square

- An example: is gender a good feature for predicting footwear preference?
 - A: gender
 - B: footwear preference
- Bivariate tabular analysis:
 - Is there a relationship between two random variables A and B in the data?
 - How strong is the relationship?
 - What is the direction of the relationship?

Raw frequencies

	sandal	sneaker	Leather shoe	boots	others
male	6	17	13	9	5
female	13	5	7	16	9

Feature: male/female

Classes: {sandal, sneaker,}

Two distributions

Observed distribution (O):

	Sandal	Sneaker	Leather	Boot	Others
Male	6	17	13	9	5
Female	13	5	7	16	9

Expected distribution (E):

	Sandal	Sneaker	Leather	Boot	Others	Total
Male						50
Female						50
Total	19	22	20	25	14	100

Two distributions

Observed distribution (O):

	Sandal	Sneaker	Leather	Boot	Others	Total
Male	6	17	13	9	5	50
Female	13	5	7	16	9	50
Total	19	22	20	25	14	100

Expected distribution (E):

	Sandal	Sneaker	Leather	Boot	Others	Total
Male	9.5	11	10	12.5	7	50
Female	9.5	11	10	12.5	7	50
Total	19	22	20	25	14	100

Chi square

 Expected value = row total * column total / table total

•
$$\chi^2 = \sum_{ij} (O_{ij} - E_{ij})^2 / E_{ij}$$

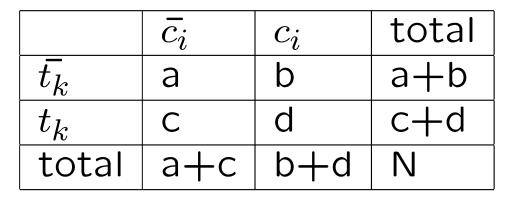
• $\chi^2 = (6-9.5)^2/9.5 + (17-11)^2/11 + \dots$ = 14.026

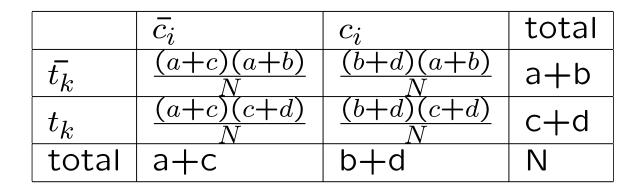
Calculating χ^2

- Fill out a contingency table of the observed values → O
- Compute the row totals and column totals
- Calculate expected value for each cell assuming no association → E
- Compute chi square: (O-E)²/E

When r=2 and c=2

E =





 $\chi^2 = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}} = \frac{(ad - bc)^2 N}{(a+b)(a+c)(b+d)(c+d)}_{*}$

 χ^2 test

Basic idea

- Null hypothesis (the tested hypothesis): no relation exists between two random variables.
- Calculate the probability of having the observation with that χ^2 value, assuming the hypothesis is true.
- If the probability is too small, reject the hypothesis.

Requirements

- The events are assumed to be independent and have the same distribution.
- The outcomes of each event must be mutually exclusive.
- At least 5 observations per cell.
- Collect raw frequencies, not percentages

Degree of freedom

Degree of freedom df = (r - 1) (c - 1)
r: # of rows c: # of columns

• In this Ex: df=(2-1) (5-1)=4

χ^2 distribution table

	0.10	0.05	0.025	0.01	0.001
1	2.706	3.841	5.024	6.635	10.828
2	4.605	5.991	7.378	9.210	13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458

df=4 and 14.026 > 13.277 →p<0.01 →there is a significant relation

χ^2 to P Calculator

http://faculty.vassar.edu/lowry/tabs.html#csq

Steps of χ^2 test

- Select significance level p₀
- Calculate χ^2
- Compute the degree of freedom
 df = (r-1)(c-1)
- Calculate p given χ^2 value (or get the χ^2_0 for p_0)
- if $p < p_0$ (or if $\chi^2 > \chi^2_0$) then reject the null hypothesis.

Summary of χ^2 test

 A very common method for determining whether two random variables are independent

- Many good tutorials online
 - Ex: <u>http://en.wikipedia.org/wiki/Chi-square_distribution</u>

Additional slides

χ^2 example

• Shared Task Evaluation:

- Topic Detection and Tracking (aka TDT)

• Sub-task: Topic Tracking Task

- Given a small number of exemplar documents (1-4)

- Define a topic
- Create a model that allows tracking of the topic

- I.e. find all subsequent documents on this topic

- Exemplars: 1-4 newswire articles
 - 300-600 words each

Challenges

- Many news articles look alike
 - Create a profile (feature representation)
 - Find terms that are strongly associated with current topic
- Not all documents are labeled
 - Only a small subset belong to topics of interest
 - Differentiate from other topics AND 'background'

Approach

- X² feature selection:
 - Assume terms have binary representation
 - Positive class term occurrences from exemplar docs
 - Negative class term occurrences from
 - other class exemplars, 'earlier' uncategorized docs
 - Compute X² for terms
 - Retain terms with highest X² scores
 - Keep top N terms
- Create one feature set per topic to be tracked

Tracking Approach

- Build vector space model
 - Feature weighting: tf*idf
 - Distance measure: Cosine similarity
- Select documents scoring above threshold
- Result: Improved retrieval