Maximum Entropy Model (I)

LING 572 Fei Xia

MaxEnt in NLP

- The maximum entropy principle has a long history.
- The MaxEnt algorithm was introduced to the NLP field by Berger et. al. (1996).
- Used in many NLP tasks: Tagging, Parsing, PP attachment, ...

Readings & Comments

- Several readings:
 - (Berger, 1996), (Ratnaparkhi, 1997)
 - (Klein & Manning, 2003): Tutorial
 - Note: Some of these are very 'dense'
 - Don't spend huge amount of time on every detail
 - Take a first pass before class, review after lecture
- Going forward:
 - Techniques more complex
 - Goal: Understand basic model, concepts
 - Training is complex; we'll discuss, but not implement

Notation

	Input	Output	The pair
(Berger et. al., 1996)	X	У	(x, y)
(Ratnaparkhi, 1997)	b	а	X
(Ratnaparkhi, 1996)	h	t	(h, t)
(Klein and Manning, 2003)	d	С	(c, d)

We following the notation in (Berger et al., 1996)

Outline

- Overview
- The Maximum Entropy Principle
- Modeling**
- Decoding
- Training**
- Case study: POS tagging

The Overview

Joint vs. Conditional models

- Given training data {(x,y)}, we want to build a model to predict y for new x's. For each model, we need to estimate the parameters θ.
- Joint (aka generative) models estimate P(x,y) by maximizing the likelihood: P(X,Y|θ)
 - Ex: n-gram models, HMM, Naïve Bayes, PCFG
 - Choosing weights is trivial: just use relative frequencies.
- Conditional (aka discriminative) models estimate P(y | x) by maximizing the conditional likelihood: P(Y | X, θ)
 - Ex: MaxEnt, SVM, CRF, etc.
 - Computing weights is more complex.

Naïve Bayes Model С \mathbf{f}_2 f₁

Assumption: each f_m is conditionally independent from f_n given C.

The conditional independence assumption

f_m and f_n are conditionally independent given c: P($f_m | c, f_n$) = P($f_m | c$)

Counter-examples in the text classification task:

- P("Manchester" | entertainment) !=
 P("Manchester" | entertainment, "Oscar")
- Q: How to deal with correlated features?
- A: Many models, including MaxEnt, do not assume that features are conditionally independent.

Naïve Bayes highlights

Choose

 $c^* = arg max_c P(c) \prod_k P(f_k | c)$

- Two types of model parameters:
 - Class prior: P(c)
 - Conditional probability: $P(f_k | c)$
- The number of model parameters: |C|+|CV|

P(f | c) in NB

	f ₁	f ₂		fj
с ₁	P(f ₁ c ₁)	$P(f_2 c_1)$		P(f _j c ₁)
C ₂	P(f ₁ c ₂)			
		1000	1.000	1000
C _i	P(f ₁ c _i)			$P(f_j c_i)$

Each cell is a weight for a particular (class, feat) pair.

Weights in NB and MaxEnt

• In NB

– P(f | y) are probabilities (i.e., \in [0,1])

- P(f | y) are multiplied at test time

$$P(y|x) = \frac{P(y)\prod_{k} P(f_{k}|y)}{Z} = \frac{e^{\ln(P(y))\prod_{k} P(f_{k}|y))}}{Z}$$
$$= \frac{e^{\ln P(y) + \ln(\prod_{k} P(f_{k}|y))}}{Z} = \frac{e^{\ln P(y) + \sum_{k} \ln P(f_{k}|y)}}{Z}$$

- In MaxEnt
 - the weights are real numbers: they can be negative.
 - the weights are added at test time

$$P(y|x) = \frac{e^{\sum_{j} \lambda_j f_j(x,y)}}{Z}$$

The highlights in MaxEnt $P(y|x) = \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{z}$

 $f_j(x,y)$ is a feature function, which normally corresponds to a (feature, class) pair.

Training: to estimate λ_j

Testing: to calculate P(y | x)

Main questions

- What is the maximum entropy principle?
- What is a feature function?
- Modeling: Why does P(y|x) have the form? $P(y|x) = \frac{e^{\sum_j \lambda_j f_j(x,y)}}{Z}$
- Training: How do we estimate λ_j ?

Outline

- Overview
- The Maximum Entropy Principle
- Modeling**
- Decoding
- Training*
- Case study

The maximal entropy principle

The maximum entropy principle

- Intuitively, model all that is known, and assume as little as possible about what is unknown.
- Related to Occam's razor and other similar justifications for scientific inquiry
- Also: Laplace's *Principle of Insufficient Reason: when one has no* information to distinguish between the probability of two events, the best strategy is to consider them equally likely.

Maximum Entropy

- Why maximum entropy?
 Maximize entropy = Minimize commitment
- Model all that is known and assume nothing about what is unknown.
 - Model all that is known: satisfy a set of constraints that must hold
 - Assume nothing about what is unknown: choose the most "uniform" distribution
 - \rightarrow choose the one with maximum entropy

Ex1: Coin-flip example (Klein & Manning, 2003)

- Toss a coin: p(H)=p1, p(T)=p2.
- Constraint: p1 + p2 = 1
- Question: what's p(x)? That is, what is the value of p1?
- Answer: choose the p that maximizes H(p)

$$H(p) = -\sum_{x} p(x) \log p(x)$$

19

Ex2: An MT example (Berger et. al., 1996)

Possible translation for the word "in" is: {dans, en, à, au cours de, pendant}

Constraint:

 $p(dans) + p(en) + p(a) + p(au \ cours \ de) + p(pendant) = 1$

Intuitive answer: p(dans) = 1/5 p(en) = 1/5 p(a) = 1/5 $p(au \ cours \ de) = 1/5$ p(pendant) = 1/5

An MT example (cont)

Constraints:

- p(dans) + p(en) = 3/10
- $p(dans) + p(en) + p(a) + p(au \ cours \ de) + p(pendant) = 1$

- Intuitive answer: p(dans) = 3/20
 - p(en) = 3/20
 - $p(\dot{a}) = 7/30$
 - $p(au \ cours \ de) = 7/30$
 - p(pendant) = 7/30

21

An MT example (cont)

Constraints:

- p(dans) + p(en) = 3/10
- $p(dans) + p(en) + p(a) + p(au \ cours \ de) + p(pendant) = 1$

$$p(dans) + p(\dot{a}) = 1/2$$

Intuitive answer:

??

Ex3: POS tagging (Klein and Manning, 2003)

Lets say we have the following event space:

... and the following empirical data:

3 5 11 13 3	1
-------------	---

Maximize H:

want probabilities: E[NN,NNS,NNP,NNPS,VBZ,VBD] = 1

1/6 1/6 1/6 1/6 1/6 1/6

Ex3 (cont)

- Too uniform!
- N* are more common than V*, so we add the feature f_N = {NN, NNS, NNP, NNPS}, with E[f_N] =32/36

NN	NNS	NNP	NNPS	VBZ	VBD
8/36	8/36	8/36	8/36	2/36	2/36

 ... and proper nouns are more frequent than common nouns, so we add f_P = {NNP, NNPS}, with E[f_P] =24/36

NN	NNS	NNP	NNPS	VBZ	VBD
4/36	4/36	12/36	12/36	2/36	2/36

Ex4: Overlapping features (Klein and Manning, 2003)

$$AII = 1$$

	А	а
В	p1	p2
b	р3	p4

	А	а
В	1/4	1/4
b	1/4	1/4

Ex4 (cont)

Empirical

	А	a
В	1	1
b	1	0

	А	a
В	p1	p2
b	$\frac{2}{3} - p_1$	$\frac{1}{3} - p_2$

	А	a
В		
b		

$$A = 2/3$$

Ex4 (cont)

А

В

b

а

A = 2/3

B = 2/3

	А	a
В	4/9	2/9
b	2/9	1/9

Empirical

	А	a
В	1	1
b	1	0

The MaxEnt Principle summary

• Goal: Among all the distributions that satisfy the constraints, choose the one, p*, that maximizes H(p). $p^* = \arg \max H(p)$

 $p \in P$

- Q1: How to represent constraints?
- Q2: How to find such distributions?