
Hw6: beam search

Q1: Beam search

- format: beamsearch_maxent.sh test_data boundary_file model_file syst_output beam_size topN topK
- test_data: the format is "instanceName goldClass f1 v1 f2 v2 ..."
 - This includes words from all the test sentences.
 - prevT=xx and prevTwoTags=xx+yy are NOT in the feature vector. You need to add them on the fly.
- boundary_file: length of each sentence so you know when to end a beam search
- model_file: MaxEnt model in text format
- sys_output: instanceName goldClass sysClass prob
 - instanceName and goldClass are copied from test_data
 - sysClass is the y for x according to the best sequence for the sentence
 - Prob is P(y | x): y is the tag, x is the word.
- beam_size, topN, and topK: see slide #5-6

- Remember to add prevT=tag and prevTwoTags=tag₋₂+tag₋₁
 <u>before</u> calculating P(y | x).
- Features:
 - tag₋₂ is the tag of W_{-2} and tag₋₁ is the tag of W_{-1}
 - For the list of tags, see prevT=tag in the model file
 - If the model file does not have weights for those feature functions, that means the weights for them are zero.
- Test your code with small data files first.

Beam search

4

Beam search

Parameters: topN, topK, beam_size

(1) Get topN tags for w_1 and form nodes $s_{1,j}$

(2) For i=2 to n (n is the sentence length) For each surviving node $s_{i-1,j}$ form the vector for w_i get topN tags for w_i and form new nodes Prune nodes at position i

(3) Pick the node at position n with highest prob

Pruning at Position i

Each node at Position *i* should store a tag for w_i and a prob, where the prob is $\prod_{k=1}^{i} P(t_k|h_k)$.

Let max_prob be the highest prob among the nodes at Position i

For each node $s_{i,j}$ at Position iLet $prob_{i,j}$ be the probability stored at the node keep the node iff $prob_{i,j}$ is among the topK of the nodes and $lg(prob_{i,j}) + \text{beam_size} \ge lg(max_prob)$