Hw7

- Task: the text classification task
- Transformation has the format "feat class1 class2", which means:

if (feat is present) && (CurLabel == class1)
 then set CurLabel=class2

which is equivalent as if (feat is present) then change CurLabel from class1 to class2

Q1: TBL trainer

- TBL_train.sh train_data model_file min_gain if net_gain < min_gain then stop iteration
- The format of model_file: init_class_name featName from_classname to_classname net_gain
- Ex of model_file: guns talk guns mideast 89

Q2: TBL decoder

- TBL_classify.sh test_data model_file sys_output > acc
- The format of sys_output: instanceName trueLabel SysLabel trans1 trans2

Each transformation has the format: featName from_class to_class

• Ex of sys_output: file1 guns mideast

we guns misc

talk misc mideast

Efficiency issue for training

- Method 1:
 - Read in all the training data to get a list of features and labels: map feat to feat-idx and label to label-idx for speedup.
 - Generate all the transformations with the form (feat, from-label, to-label)
 - Repeat
 - For each transformation, go through the data once to calculate its net-gain
 - Choose the best transformation with the highest gain
 - If the highest gain is less than min-gain then last;
 - apply the best transformation to update the last column

➔ For each iteration, go through the training data T times, where T is the number of transformations.

Calculate net gain of a transformation

- Suppose the transformation is (feat, from-label, to-label)
- net-gain = 0;
- For each training instance x {
 - Let x be ({f_i}, gold-label, cur-label) // {f_i} is the set of feats present in x
 - If (feat does not belong to {f_i}) or (from-label != cur-label) then next; // no change to net-gain
 - If to-label == gold-label

```
then net-gain ++
```

else {

```
if cur-label == gold-label
```

then net-gain --;

```
else nothing to do; // no change to net-gain
```

}

Efficiency issue for training

- Method 2:
 - Read in all the training data to get a list of features and labels: map feat to feat-idx and label to label-idx for speedup.
 - Repeat
 - Go through the data once to generate transformations and calculate the net gains for all the transformations
 - Choose the best transformation with the highest gain
 - If the highest gain is less than min-gain then last;
 - apply the best transformation to update the last column

→ For each iteration, go through the training data once.

Calculate net gains of all transformations

- net-gains = []; // net-gains is an array storing the net gains, and each element has value 0.
- Let C be the set of all the class labels
- For each training instance x {
 - Let x be ({f_i}, gold-label, cur-label) // {f_i} is the set of feats present in x
 - For each feature feat in {f_i} {

for every label to-label in C that is different from cur-label {

```
if to-label == gold-label
```

then net-gains[idx-of(feat, cur-label, to-label)] ++;

else if (cur-label == gold-label)

then net-gains[idx-of(feat, cur-label, to-label)] --;

}

An example

Net-gains[(feat, cur-label, to-label)] =0

• x1 c1 f1 f20 (current-label=c2)

```
net-gains[(f1, c2,c1)] ++
net-gains[(f20, c2, c1)]++
%% net-gains[(f1, c2, c3)] and net-gain[(f20, c2, c3)] remain unchanged
```

 x10 c2 f3 f5 (current-label=c2) net-gains[(f3, c2, c1)] -net-gains[(f3, c2, c3)] -net-gains[(f5, c2, c1)] -net-gains[(f5, c2, c3)] --