
Question Answering
Using Answer

Classification and Query
Expansion

LING573
David Lin Edward Wong Chris Staley

Goals

•  Improve upon our previous results and
approaches.

•  Develop a QA system that can be more
readily tinkered with and improved upon by
instituting unit tests and refactoring our code
to make it more modular,

Approach

•  Question Classification
o  Trained a Support Vector Machine (SVM) to classify

into 6 coarse buckets
o  Used the associated probabilities to assign the

classification to one of three likelihoods

•  Web Search
o  Use Pattern package to return snippets from Google

based on the queries
o  Separated answers into individual sentences and

deduped
o  Web search is cached per query question, if the

query question does not exist a web search is made

Approach

•  Question Reformulation
o  Replaces question topics based on NER and POS

tags
o  Topic NER is based on the most common NER type
o  Uses a topicMap hash table to map NER types to

acceptable POS tags to replace
o  Includes logic to ensure topic hasn't already been

replaced

Approach

•  Answer Extraction
o  N-gram redundancy method to return N-grams that

appear most frequently in the document
o  Answer boosting based on predicted answer type
o  Heuristics to remove invalid answers
o  Removed answers with the topic as part of the

answer

•  Document Retrieval
o  Submit answers to Lucene-based IR engine to find

relevant document

Approach

•  Unit Test Cases
o  Borrowed from our combined work experiences, as

well as previous deliverables.
o  Rather than risk programming something new, and

risking additional breakage further down, we wanted
to make sure our existing system was "bug free"

o  We were hoping that once we are confident with our
code, we'd move on to additional features.

Implementation

Implementation

Implementation

Implementation

Implementation

Issues and Successes

•  Attempts to improve results ended up
yielding worse scores

•  Code was structurally improved so that
future iterations could be more easily
undertaken

•  Time spent working on individual test cases
helped fix bugs at the function-call level;
however there were still macroscopic issues
that our cases still could not cover/forsee.

Unit Tests and beyond

Pros:
•  Helped us isolate functions to a more

testable metric
•  Quicker tests for individual functions which

didn't include a full run to fix
•  Ability to refactor for performance
Cons:
•  Should have started earlier/from the

beginning...
•  Didn't have full coverage, functional tests

Results

100 Characters 250 Characters

Strict 0.0 0.0

Lenient 0.0324554783058 0.0324554783058

100 Characters 250 Characters

Strict 0.0 0.0

Lenient 0.0366938487476 0.0366938487476

TREC-2006 Results

TREC-2007 Results

Potential Improvements

•  Query Formulation
o  More sophisticated parsing of the question
o  Tune the classification algorithm

•  IR Engine
o  Use the documents as the main source of snippets

to search rather than the web
o  Increase accuracy to improve Strict score

•  Answer extraction
o  Investigate incorrect answers to improve methods

for finding the answer in the candidate passages

