Question Processing: Formulation & Expansion

Ling573 NLP Systems and Applications May 2, 2013

Deeper Processing for Query Formulation

- MULDER (Kwok, Etzioni, & Weld)
- Converts question to multiple search queries
 - Forms which match target
 - Vary specificity of query
 - Most general bag of keywords
 - Most specific partial/full phrases

Deeper Processing for Query Formulation

- MULDER (Kwok, Etzioni, & Weld)
- Converts question to multiple search queries
 - Forms which match target
 - Vary specificity of query
 - Most general bag of keywords
 - Most specific partial/full phrases
 - Subsets 4 query forms on average
- Employs full parsing augmented with morphology

- Creates full syntactic analysis of question
 - Maximum Entropy Inspired (MEI) parser
 - Trained on WSJ

- Creates full syntactic analysis of question
 - Maximum Entropy Inspired (MEI) parser
 - Trained on WSJ
- Challenge: Unknown words
 - Parser has limited vocabulary
 - Uses guessing strategy
 - Bad: "tungsten"

- Creates full syntactic analysis of question
 - Maximum Entropy Inspired (MEI) parser
 - Trained on WSJ
- Challenge: Unknown words
 - Parser has limited vocabulary
 - Uses guessing strategy
 - Bad: "tungsten" → number
- Solution:

- Creates full syntactic analysis of question
 - Maximum Entropy Inspired (MEI) parser
 - Trained on WSJ
- Challenge: Unknown words
 - Parser has limited vocabulary
 - Uses guessing strategy
 - Bad: "tungsten" → number
- Solution:
 - Augment with morphological analysis: PC-Kimmo
 - If PC-KIMMO fails?

- Creates full syntactic analysis of question
 - Maximum Entropy Inspired (MEI) parser
 - Trained on WSJ
- Challenge: Unknown words
 - Parser has limited vocabulary
 - Uses guessing strategy
 - Bad: "tungsten" → number
- Solution:
 - Augment with morphological analysis: PC-Kimmo
 - If PC-KIMMO fails? Guess Noun

- Simple categorization:
 - Nominal, numerical, temporal
 - Hypothesis: Simplicity \rightarrow High accuracy
 - Also avoids complex training, ontology design

- Simple categorization:
 - Nominal, numerical, temporal
 - Hypothesis: Simplicity → High accuracy
 - Also avoids complex training, ontology design
- Parsing used in two ways:
 - Constituent parser extracts wh-phrases:
 - e.g. wh-adj: how many

- Simple categorization:
 - Nominal, numerical, temporal
 - Hypothesis: Simplicity → High accuracy
 - Also avoids complex training, ontology design
- Parsing used in two ways:
 - Constituent parser extracts wh-phrases:
 - e.g. wh-adj: how many \rightarrow numerical; wh-adv: when, where

- Simple categorization:
 - Nominal, numerical, temporal
 - Hypothesis: Simplicity → High accuracy
 - Also avoids complex training, ontology design
- Parsing used in two ways:
 - Constituent parser extracts wh-phrases:
 - e.g. wh-adj: how many \rightarrow numerical; wh-adv: when, where
 - wh-noun: type?

- Simple categorization:
 - Nominal, numerical, temporal
 - Hypothesis: Simplicity → High accuracy
 - Also avoids complex training, ontology design
- Parsing used in two ways:
 - Constituent parser extracts wh-phrases:
 - e.g. wh-adj: how many \rightarrow numerical; wh-adv: when, where
 - wh-noun: type? → any
 - what height vs what time vs what actor

- Simple categorization:
 - Nominal, numerical, temporal
 - Hypothesis: Simplicity → High accuracy
 - Also avoids complex training, ontology design
- Parsing used in two ways:
 - Constituent parser extracts wh-phrases:
 - e.g. wh-adj: how many \rightarrow numerical; wh-adv: when, where
 - wh-noun: type? \rightarrow any
 - what height vs what time vs what actor
 - Link parser identifies verb-object relation for wh-noun
 - Uses WordNet hypernyms to classify object, Q

- Parse-based transformations:
 - Applies transformational grammar rules to questions

- Parse-based transformations:
 - Applies transformational grammar rules to questions
 - Example rules:
 - Subject-auxiliary movement:
 - Q: Who was the first American in space?

- Parse-based transformations:
 - Applies transformational grammar rules to questions
 - Example rules:
 - Subject-auxiliary movement:
 - Q: Who was the first American in space?
 - Alt: was the first American...; the first American in space was
 - Subject-verb movement:
 - Who shot JFK?

- Parse-based transformations:
 - Applies transformational grammar rules to questions
 - Example rules:
 - Subject-auxiliary movement:
 - Q: Who was the first American in space?
 - Alt: was the first American...; the first American in space was
 - Subject-verb movement:
 - Who shot JFK? => shot JFK
 - Etc

- Parse-based transformations:
 - Applies transformational grammar rules to questions
 - Example rules:
 - Subject-auxiliary movement:
 - Q: Who was the first American in space?
 - Alt: was the first American...; the first American in space was
 - Subject-verb movement:
 - Who shot JFK? => shot JFK
 - Etc

More General Query Processing

- WordNet Query Expansion
 - Many lexical alternations: 'How tall' \rightarrow 'The height is'
 - Replace adjectives with corresponding 'attribute noun'

More General Query Processing

- WordNet Query Expansion
 - Many lexical alternations: 'How tall' \rightarrow 'The height is'
 - Replace adjectives with corresponding 'attribute noun'
- Verb conversion:
 - Morphological processing
 - DO-AUX V-INF → V+inflection
 - Generation via PC-KIMMO

More General Query Processing

- WordNet Query Expansion
 - Many lexical alternations: 'How tall' \rightarrow 'The height is'
 - Replace adjectives with corresponding 'attribute noun'
- Verb conversion:
 - Morphological processing
 - DO-AUX V-INF → V+inflection
 - Generation via PC-KIMMO
- Query formulation contributes significantly to effectiveness

Machine Learning Approaches

- Diverse approaches:
 - Assume annotated query logs, annotated question sets, matched query/snippet pairs

Machine Learning Approaches

- Diverse approaches:
 - Assume annotated query logs, annotated question sets, matched query/snippet pairs
 - Learn question paraphrases (MSRA)
 - Improve QA by setting question sites
 - Improve search by generating alternate question forms

Machine Learning Approaches

- Diverse approaches:
 - Assume annotated query logs, annotated question sets, matched query/snippet pairs
 - Learn question paraphrases (MSRA)
 - Improve QA by setting question sites
 - Improve search by generating alternate question forms
 - Question reformulation as machine translation
 - Given question logs, click-through snippets
 - Train machine learning model to transform Q -> A

Query Expansion

- Basic idea:
 - Improve matching by adding words with similar meaning/similar topic to query

Query Expansion

- Basic idea:
 - Improve matching by adding words with similar meaning/similar topic to query
- Alternative strategies:
 - Use fixed lexical resource
 - E.g. WordNet

Query Expansion

- Basic idea:
 - Improve matching by adding words with similar meaning/similar topic to query
- Alternative strategies:
 - Use fixed lexical resource
 - E.g. WordNet
 - Use information from document collection
 - Pseudo-relevance feedback

WordNet Based Expansion

- In Information Retrieval settings, mixed history
 - Helped, hurt, or no effect
 - With long queries & long documents, no/bad effect

WordNet Based Expansion

- In Information Retrieval settings, mixed history
 - Helped, hurt, or no effect
 - With long queries & long documents, no/bad effect
- Some recent positive results on short queries
 - E.g. Fang 2008
 - Contrasts different WordNet, Thesaurus similarity
 - Add semantically similar terms to query
 - Additional weight factor based on similarity score

Similarity Measures

- Definition similarity: S_{def}(t₁,t₂)
 - Word overlap between glosses of all synsets
 - Divided by total numbers of words in all synsets glosses

Similarity Measures

- Definition similarity: $S_{def}(t_1, t_2)$
 - Word overlap between glosses of all synsets
 - Divided by total numbers of words in all synsets glosses
- Relation similarity:
 - Get value if terms are:
 - Synonyms, hypernyms, hyponyms, holonyms, or meronyms

Similarity Measures

- Definition similarity: S_{def}(t₁,t₂)
 - Word overlap between glosses of all synsets
 - Divided by total numbers of words in all synsets glosses
- Relation similarity:
 - Get value if terms are:
 - Synonyms, hypernyms, hyponyms, holonyms, or meronyms

• Term similarity score from Lin's thesaurus

Results

- Definition similarity yields significant improvements
 - Allows matching across POS
 - More fine-grained weighting than binary relations

Managing Morphological Variants

- Bilotti et al. 2004
- "What Works Better for Question Answering: Stemming or Morphological Query Expansion?"

Managing Morphological Variants

- Bilotti et al. 2004
- "What Works Better for Question Answering: Stemming or Morphological Query Expansion?"
- Goal:
 - Recall-oriented document retrieval for QA
 - Can't answer questions without relevant docs

Managing Morphological Variants

- Bilotti et al. 2004
- "What Works Better for Question Answering: Stemming or Morphological Query Expansion?"
- Goal:
 - Recall-oriented document retrieval for QA
 - Can't answer questions without relevant docs
- Approach:
 - Assess alternate strategies for morphological variation

Question

- Comparison
 - Index time stemming
 - Stem document collection at index time
 - Perform comparable processing of query
 - Common approach
 - Widely available stemmer implementations: Porter, Krovetz

Question

- Comparison
 - Index time stemming
 - Stem document collection at index time
 - Perform comparable processing of query
 - Common approach
 - Widely available stemmer implementations: Porter, Krovetz
 - Query time morphological expansion
 - No morphological processing of documents at index time
 - Add additional morphological variants at query time
 - Less common, requires morphological generation

- Mostly focused on stemming
- Mixed results (in spite of common use)
 - Harman found little effect in ad-hoc retrieval: Why?

- Mostly focused on stemming
- Mixed results (in spite of common use)
 - Harman found little effect in ad-hoc retrieval: Why?
 - Morphological variants in long documents
 - Helps some, hurts others: How?

- Mostly focused on stemming
- Mixed results (in spite of common use)
 - Harman found little effect in ad-hoc retrieval: Why?
 - Morphological variants in long documents
 - Helps some, hurts others: How?
 - Stemming captures unrelated senses: e.g. AIDS \rightarrow aid
 - Others:
 - Large, obvious benefits on morphologically rich langs.
 - Improvements even on English

- Mostly focused on stemming
- Mixed results (in spite of common use)
 - Harman found little effect in ad-hoc retrieval: Why?
 - Morphological variants in long documents
 - Helps some, hurts others: How?
 - Stemming captures unrelated senses: e.g. AIDS \rightarrow aid
 - Others:
 - Large, obvious benefits on morphologically rich langs.
 - Improvements even on English
 - Hull: most queries improve, some improve a lot

- Mostly focused on stemming
- Mixed results (in spite of common use)
 - Harman found little effect in ad-hoc retrieval: Why?
 - Morphological variants in long documents
 - Helps some, hurts others: How?
 - Stemming captures unrelated senses: e.g. AIDS \rightarrow aid
 - Others:
 - Large, obvious benefits on morphologically rich langs.
 - Improvements even on English
 - Hull: most queries improve, some improve a lot
 - Monz: Index time stemming improved QA

- Head-to-head comparison
- AQUAINT documents

- Head-to-head comparison
- AQUAINT documents
- Retrieval based on Lucene
 - Boolean retrieval with tf-idf weighting

- Head-to-head comparison
- AQUAINT documents
- Retrieval based on Lucene
 - Boolean retrieval with tf-idf weighting
- Compare retrieval varying stemming and expansion

- Head-to-head comparison
- AQUAINT documents
- Retrieval based on Lucene
 - Boolean retrieval with tf-idf weighting
- Compare retrieval varying stemming and expansion
- Assess results

- Observation: (We've seen it, too.)
 - # of known relevant docs in TREC QA very small

- Observation: (We've seen it, too.)
 - # of known relevant docs in TREC QA very small
 - TREC 2002: 1.95 relevant per question in pool
 - Clearly many more
- Approach:

- Observation: (We've seen it, too.)
 - # of known relevant docs in TREC QA very small
 - TREC 2002: 1.95 relevant per question in pool
 - Clearly many more
- Approach:
 - Manually create improve relevance assessment
 - Create queries from originals

- Observation: (We've seen it, too.)
 - # of known relevant docs in TREC QA very small
 - TREC 2002: 1.95 relevant per question in pool
 - Clearly many more
- Approach:
 - Manually create improve relevance assessment
 - Create queries from originals
 - Terms that "must necessarily" appear in relevant docs
 - Retrieve and verify documents
 - Found 15.84 relevant per question

• Q: What is the name of the volcano that destroyed the ancient city of Pompeii?" A: Vesuvius

• New search query:

- Q: What is the name of the volcano that destroyed the ancient city of Pompeii?" A: Vesuvius
- New search query: "Pompeii" and "Vesuvius"
- In A.D. 79, long-dormant Mount Vesuvius erupted, burying the Roman cities of Pompeii and Herculaneum in volcanic ash."

- Q: What is the name of the volcano that destroyed the ancient city of Pompeii?" A: Vesuvius
- New search query: "Pompeii" and "Vesuvius"
- Relevant: In A.D. 79, long-dormant Mount Vesuvius erupted, burying the Roman cities of Pompeii and Herculaneum in volcanic ash."
- Pompeii was pagan in A.D. 79, when Vesuvius erupted.

- Q: What is the name of the volcano that destroyed the ancient city of Pompeii?" A: Vesuvius
- New search query: "Pompeii" and "Vesuvius"
- Relevant: In A.D. 79, long-dormant Mount Vesuvius erupted, burying the Roman cities of Pompeii and Herculaneum in volcanic ash."
- Unsupported: Pompeii was pagan in A.D. 79, when Vesuvius erupted.
- Vineyards near Pompeii grow in volcanic soil at the foot of Mt. Vesuvius

- Q: What is the name of the volcano that destroyed the ancient city of Pompeii?" A: Vesuvius
- New search query: "Pompeii" and "Vesuvius"
- Relevant: In A.D. 79, long-dormant Mount Vesuvius erupted, burying the Roman cities of Pompeii and Herculaneum in volcanic ash."
- Unsupported: Pompeii was pagan in A.D. 79, when Vesuvius erupted.
- Irrelevant: Vineyards near Pompeii grow in volcanic soil at the foot of Mt. Vesuvius

- Base query form: Conjunct of disjuncts
 - Disjunction over morphological term expansions

- Base query form: Conjunct of disjuncts
 - Disjunction over morphological term expansions
 - Rank terms by IDF
 - Successive relaxation by dropping lowest IDF term
- Contrasting conditions:

- Base query form: Conjunct of disjuncts
 - Disjunction over morphological term expansions
 - Rank terms by IDF
 - Successive relaxation by dropping lowest IDF term
- Contrasting conditions:
 - Baseline: No nothing (except stopword removal)

- Base query form: Conjunct of disjuncts
 - Disjunction over morphological term expansions
 - Rank terms by IDF
 - Successive relaxation by dropping lowest IDF term
- Contrasting conditions:
 - Baseline: No nothing (except stopword removal)
 - Stemming: Porter stemmer applied to query, index

- Base query form: Conjunct of disjuncts
 - Disjunction over morphological term expansions
 - Rank terms by IDF
 - Successive relaxation by dropping lowest IDF term
- Contrasting conditions:
 - Baseline: No nothing (except stopword removal)
 - Stemming: Porter stemmer applied to query, index
 - Unweighted inflectional expansion:
 - POS-based variants generated for non-stop query terms

- Base query form: Conjunct of disjuncts
 - Disjunction over morphological term expansions
 - Rank terms by IDF
 - Successive relaxation by dropping lowest IDF term
- Contrasting conditions:
 - Baseline: No nothing (except stopword removal)
 - Stemming: Porter stemmer applied to query, index
 - Unweighted inflectional expansion:
 - POS-based variants generated for non-stop query terms
 - Weighted inflectional expansion: prev. + weights

- Q: What lays blue eggs?
- Baseline: blue AND eggs AND lays
- Stemming: blue AND egg AND lai
- UIE: blue AND (eggs OR egg) AND (lays OR laying OR lay OR laid)
- WIE: blue AND (eggs OR egg^w) AND (lays OR laying^w OR lay^w OR laid^w)

• Recall-oriented

- Recall-oriented: why?
 - All later processing filters

- Recall-oriented: why?
 - All later processing filters
- Recall @ n:
 - Fraction of relevant docs retrieved at some cutoff

- Recall-oriented: why?
 - All later processing filters
- Recall @ n:
 - Fraction of relevant docs retrieved at some cutoff
- Total document reciprocal rank (TDRR):
 - Compute reciprocal rank for rel. retrieved documents
 - Sum overall documents
 - Form of weighted recall, based on rank

Results

		Recall				TDRR			
Limit	Experiment	relevant	Δ	both	Δ	relevant	Δ	both	Δ
100	unstemmed	0.2720		0.2595		0.6403		0.6673	
	stemmed	0.2589	-4.82%	0.2460	-5.20%	0.5869	-8.33%	0.5987	-10.28%
	expanded	0.2748	+1.03%	0.2612	+0.66%	0.5752	-10.16%	0.5968	-10.56%
	w. expanded	0.2944	+8.24%	0.2798	+7.82%	0.6094	-4.82%	0.6305	-5.52%
250	unstemmed	0.3738		0.3584		0.6509		0.6790	
	stemmed	0.3626	-3.00%	0.3474	-3.07%	0.5995	-7.90%	0.6122	-9.84%
	expanded	0.3682	-1.50%	0.3533	-1.42%	0.5863	-9.93%	0.6090	-10.31%
	w. expanded	0.3776	+1.02%	0.3618	+0.95%	0.6185	-4.98%	0.6406	-5.67%
500	unstemmed	0.5393		0.5123		0.6596		0.6879	
	stemmed	0.5364	-0.54%	0.5097	-0.51%	0.6086	-7.74%	0.6216	-9.65%
	expanded	0.5467	+1.37%	0.5182	+1.15%	0.5957	-9.69%	0.6186	-10.08%
	w. expanded	0.5551	+2.93%	0.5258	+2.64%	0.6279	-4.81%	0.6501	-5.50%
750	unstemmed	0.5981		0.5689		0.6614		0.6899	
	stemmed	0.5934	-0.79%	0.5638	-0.90%	0.6103	-7.72%	0.6234	-9.63%
	expanded	0.6093	+1.87%	0.5799	+1.93%	0.5976	-9.65%	0.6207	-10.03%
	w. expanded	0.6112	+2.19%	0.5816	+2.23%	0.6296	-4.81%	0.6520	-5.49%
1000	unstemmed	0.6196		0.5917		0.6618		0.6904	
	stemmed	0.6131	-1.05%	0.5824	-1.57%	0.6111	-7.67%	0.6238	-9.64%
	expanded	0.6290	+1.52%	0.5993	+1.28%	0.5980	-9.65%	0.6211	-10.03%
	w. expanded	0.6290	+1.52%	0.5993	+1.28%	0.5980	-9.65%	0.6211	-10.03%

• Recall:

- Recall:
 - Porter stemming performs WORSE than baseline
 - At all levels

- Recall:
 - Porter stemming performs WORSE than baseline
 - At all levels
 - Expansion performs BETTER than baseline
 - Tuned weighting improves over uniform
 - Most notable at lower cutoffs

- Recall:
 - Porter stemming performs WORSE than baseline
 - At all levels
 - Expansion performs BETTER than baseline
 - Tuned weighting improves over uniform
 - Most notable at lower cutoffs
- TDRR:
 - Everything's worse than baseline
 - Irrelevant docs promoted more

• Why is stemming so bad?

- Why is stemming so bad?
 - Porter stemming linguistically naïve, over-conflates
 - police = policy; organization = organ; European != Europe

- Why is stemming so bad?
 - Porter stemming linguistically naïve, over-conflates
 - police = policy; organization = organ; European != Europe
 - Expansion better motivated, constrained

- Why is stemming so bad?
 - Porter stemming linguistically naïve, over-conflates
 - police = policy; organization = organ; European != Europe
 - Expansion better motivated, constrained
- Why does TDRR drop when recall rises?

- Why is stemming so bad?
 - Porter stemming linguistically naïve, over-conflates
 - police = policy; organization = organ; European != Europe
 - Expansion better motivated, constrained
- Why does TDRR drop when recall rises?
 - TDRR and RR in general very sensitive to swaps at higher ranks
 - Some erroneous docs added higher

- Why is stemming so bad?
 - Porter stemming linguistically naïve, over-conflates
 - police = policy; organization = organ; European != Europe
 - Expansion better motivated, constrained
- Why does TDRR drop when recall rises?
 - TDRR and RR in general very sensitive to swaps at higher ranks
 - Some erroneous docs added higher
- Expansion approach provides flexible weighting