Systems & Applications: Introduction

Ling 573 NLP Systems and Applications April 2, 2013

Roadmap

Motivation

• 573 Structure

• Question-Answering

Shared Tasks

- Information retrieval is very powerful
 - Search engines index and search enormous doc sets
 - Retrieve billions of documents in tenths of seconds

- Information retrieval is very powerful
 - Search engines index and search enormous doc sets
 - Retrieve billions of documents in tenths of seconds
- But still limited!

- Information retrieval is very powerful
 - Search engines index and search enormous doc sets
 - Retrieve billions of documents in tenths of seconds
- But still limited!
 - Technically keyword search (mostly)

- Information retrieval is very powerful
 - Search engines index and search enormous doc sets
 - Retrieve billions of documents in tenths of seconds
- But still limited!
 - Technically keyword search (mostly)
 - Conceptually
 - User seeks information
 - Sometimes a web site or document

- Information retrieval is very powerful
 - Search engines index and search enormous doc sets
 - Retrieve billions of documents in tenths of seconds
- But still limited!
 - Technically keyword search (mostly)
 - Conceptually
 - User seeks information
 - Sometimes a web site or document
 - Very often, the answer to a question

People ask questions on the web

- People ask questions on the web
 - Web logs:
 - Which English translation of the bible is used in official Catholic liturgies?
 - Who invented surf music?
 - What are the seven wonders of the world?

- People ask questions on the web
 - Web logs:
 - Which English translation of the bible is used in official Catholic liturgies?
 - Who invented surf music?
 - What are the seven wonders of the world?
 - 12-15% of queries

- People ask questions on the web
 - Web logs:
 - Which English translation of the bible is used in official Catholic liturgies?
 - Who invented surf music?
 - What are the seven wonders of the world?
 - 12-15% of queries
- Search sites (e.g., Google) beginning to include
 - Canonical factoids, esp. Wikipedia infobox data
 - Dates, conversions, birthdates

• Answer sites proliferate:

- Answer sites proliferate:
 - Top hit for 'questions' :

- Answer sites proliferate:
 - Top hit for 'questions' : Ask.com

- Answer sites proliferate:
 - Top hit for 'questions' : Ask.com
 - Also: Yahoo! Answers, wiki answers, Facebook,...
 - Collect and distribute human answers

- Answer sites proliferate:
 - Top hit for 'questions' : Ask.com
 - Also: Yahoo! Answers, wiki answers, Facebook,...
 - Collect and distribute human answers
 - Do I Need a Visa to Go to Japan?

- Answer sites proliferate:
 - Top hit for 'questions' : Ask.com
 - Also: Yahoo! Answers, wiki answers, Facebook,...
 - Collect and distribute human answers
 - Do I Need a Visa to Go to Japan?
 - eHow.com
 - Rules regarding <u>travel</u> between the United States and Japan are governed by both countries. Entry requirements for Japan are contingent on the purpose and length of a traveler's visit.

• Passport Requirements

 Japan requires all U.S. citizens provide a valid passport and a return on "onward" <u>ticket</u> for entry into the country. Additionally, the United States requires a passport for all citizens wishing to enter or re-enter the country.

Search Engines & QA

• Who was the prime minister of Australia during the Great Depression?

Search Engines & QA

- Who was the prime minister of Australia during the Great Depression?
 - Rank 1 snippet:
 - The conservative *Prime Minister of Australia*, Stanley Bruce

Search Engines & QA

- Who was the prime minister of Australia during the Great Depression?
 - Rank 1 snippet:
 - The conservative Prime Minister of Australia, Stanley Bruce
 - Wrong!
 - Voted out just before the Depression

Perspectives on QA

- TREC QA track (1999---)
 - Initially pure factoid questions, with fixed length answers
 - Based on large collection of fixed documents (news)
 - Increasing complexity: definitions, biographical info, etc
 - Single response

Perspectives on QA

- TREC QA track (~1999---)
 - Initially pure factoid questions, with fixed length answers
 - Based on large collection of fixed documents (news)
 - Increasing complexity: definitions, biographical info, etc
 - Single response
- Reading comprehension (Hirschman et al, 2000---)
 - Think SAT/GRE
 - Short text or article (usually middle school level)
 - Answer questions based on text
 - Also, 'machine reading'

Perspectives on QA

- TREC QA track (~1999---)
 - Initially pure factoid questions, with fixed length answers
 - Based on large collection of fixed documents (news)
 - Increasing complexity: definitions, biographical info, etc
 - Single response
- Reading comprehension (Hirschman et al, 2000---)
 - Think SAT/GRE
 - Short text or article (usually middle school level)
 - Answer questions based on text
 - Also, 'machine reading'
- And, of course, Jeopardy! and Watson

• Rich testbed for NLP techniques:

- Rich testbed for NLP techniques:
 - Information retrieval

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction
 - Word sense disambiguation

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction
 - Word sense disambiguation
 - Parsing

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction
 - Word sense disambiguation
 - Parsing
 - Semantics, etc..

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction
 - Word sense disambiguation
 - Parsing
 - Semantics, etc..
 - Co-reference

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction
 - Word sense disambiguation
 - Parsing
 - Semantics, etc..
 - Co-reference
- Deep/shallow techniques; machine learning

573 Structure

• Implementation:

573 Structure

- Implementation:
 - Create a factoid QA system

573 Structure

- Implementation:
 - Create a factoid QA system
 - Extend existing software components
 - Develop, evaluate on standard data set

573 Structure

- Implementation:
 - Create a factoid QA system
 - Extend existing software components
 - Develop, evaluate on standard data set
- Presentation:

573 Structure

- Implementation:
 - Create a factoid QA system
 - Extend existing software components
 - Develop, evaluate on standard data set
- Presentation:
 - Write a technical report
 - Present plan, system, results in class

573 Structure

- Implementation:
 - Create a factoid QA system
 - Extend existing software components
 - Develop, evaluate on standard data set
- Presentation:
 - Write a technical report
 - Present plan, system, results in class
 - Give/receive feedback

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines
- Key components:
 - D1: Setup

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines
- Key components:
 - D1: Setup
 - D2: Baseline system, Passage retrieval

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines
- Key components:
 - D1: Setup
 - D2: Baseline system, Passage retrieval
 - D3: Question processing, classification

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines
- Key components:
 - D1: Setup
 - D2: Baseline system, Passage retrieval
 - D3: Question processing, classification
 - D4: Answer processing, final results

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines
- Key components:
 - D1: Setup
 - D2: Baseline system, Passage retrieval
 - D3: Question processing, classification
 - D4: Answer processing, final results
- Deadlines:
 - Little slack in schedule; please keep to time
 - Timing: ~12 hours week; sometimes higher

- Technical report:
 - Follow organization for scientific paper
 - Formatting and Content

- Technical report:
 - Follow organization for scientific paper
 - Formatting and Content
- Presentations:
 - 10-15 minute oral presentation for deliverables

- Technical report:
 - Follow organization for scientific paper
 - Formatting and Content
- Presentations:
 - 10-15 minute oral presentation for deliverables
 - Explain goals, methodology, success, issues

- Technical report:
 - Follow organization for scientific paper
 - Formatting and Content
- Presentations:
 - 10-15 minute oral presentation for deliverables
 - Explain goals, methodology, success, issues
 - Critique each others' work

- Technical report:
 - Follow organization for scientific paper
 - Formatting and Content
- Presentations:
 - 10-15 minute oral presentation for deliverables
 - Explain goals, methodology, success, issues
 - Critique each others' work
 - Attend **ALL** presentations

• Why teams?

- Why teams?
 - Too much work for a single person
 - Representative of professional environment

- Why teams?
 - Too much work for a single person
 - Representative of professional environment
- Team organization:
 - Form groups of 3 (possibly 2) people

- Why teams?
 - Too much work for a single person
 - Representative of professional environment
- Team organization:
 - Form groups of 3 (possibly 2) people
 - Arrange coordination
 - Distribute work equitably

- Why teams?
 - Too much work for a single person
 - Representative of professional environment
- Team organization:
 - Form groups of 3 (possibly 2) people
 - Arrange coordination
 - Distribute work equitably
 - All team members receive the same grade
 - End-of-course evaluation

First Task

- Form teams:
 - Email Ryan rgeorgi@uw.edu with the team list

- Readings:
 - Current research papers in question-answering

- Readings:
 - Current research papers in question-answering
 - Jurafsky & Martin/Manning & Schutze text
 - Background, reference, refresher

- Readings:
 - Current research papers in question-answering
 - Jurafsky & Martin/Manning & Schutze text
 - Background, reference, refresher
- Software:

- Readings:
 - Current research papers in question-answering
 - Jurafsky & Martin/Manning & Schutze text
 - Background, reference, refresher
- Software:
 - Build on existing system components, toolkits
 - NLP, machine learning, etc
 - Corpora, etc

Resources: Patas

- System should run on patas
 - Existing infrastructure
 - Software systems
 - Corpora
 - Repositories

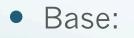
- Goals:
 - Lofty:

- Goals:
 - Lofty:
 - Focus research community on key challenges
 - 'Grand challenges'

- Goals:
 - Lofty:
 - Focus research community on key challenges
 - 'Grand challenges'
 - Support the creation of large-scale community resources
 - Corpora: News, Recordings, Video
 - Annotation: Expert questions, labeled answers,..

- Goals:
 - Lofty:
 - Focus research community on key challenges
 - 'Grand challenges'
 - Support the creation of large-scale community resources
 - Corpora: News, Recordings, Video
 - Annotation: Expert questions, labeled answers,..
 - Develop methodologies to evaluate state-of-the-art
 - Retrieval, Machine Translation, etc

- Goals:
 - Lofty:
 - Focus research community on key challenges
 - 'Grand challenges'
 - Support the creation of large-scale community resources
 - Corpora: News, Recordings, Video
 - Annotation: Expert questions, labeled answers,...
 - Develop methodologies to evaluate state-of-the-art
 - Retrieval, Machine Translation, etc
 - Facilitate technology/knowledge transfer b/t industry/acad.


- Goals:
 - Pragmatic:

- Goals:
 - Pragmatic:
 - Head-to-head comparison of systems/techniques
 - Same data, same task, same conditions, same timing

- Goals:
 - Pragmatic:
 - Head-to-head comparison of systems/techniques
 - Same data, same task, same conditions, same timing
 - Centralizes funding, effort

• Goals:

- Pragmatic:
 - Head-to-head comparison of systems/techniques
 - Same data, same task, same conditions, same timing
 - Centralizes funding, effort
 - Requires disclosure of techniques in exchange for data

• Goals:

- Pragmatic:
 - Head-to-head comparison of systems/techniques
 - Same data, same task, same conditions, same timing
 - Centralizes funding, effort
 - Require disclosure of techniques in exchange for data

- Base:
 - Bragging rights

• Goals:

- Pragmatic:
 - Head-to-head comparison of systems/techniques
 - Same data, same task, same conditions, same timing
 - Centralizes funding, effort
 - Require disclosure of techniques in exchange for data

- Base:
 - Bragging rights
 - Government research funding decisions

Shared Tasks: Perspective

• Late '80s-90s:

Shared Tasks: Perspective

- Late '80s-90s:
 - ATIS: spoken dialog systems
 - MUC: Message Understanding: information extraction

Shared Tasks: Perspective

- Late '80s-90s:
 - ATIS: spoken dialog systems
 - MUC: Message Understanding: information extraction
- TREC (Text Retrieval Conference)
 - Arguably largest (often >100 participating teams)
 - Longest running (1992-current)
 - Information retrieval (and related technologies)
 - Actually hasn't had 'ad-hoc' since ~2000, though
 - Organized by NIST

• Track: Basic task organization

- Track: Basic task organization
- Previous tracks:
 - Ad-hoc Basic retrieval from fixed document set

- Track: Basic task organization
- Previous tracks:
 - Ad-hoc Basic retrieval from fixed document set
 - Cross-language Query in one language, docs in other
 - English, French, Spanish, Italian, German, Chinese, Arabic

- Track: Basic task organization
- Previous tracks:
 - Ad-hoc Basic retrieval from fixed document set
 - Cross-language Query in one language, docs in other
 - English, French, Spanish, Italian, German, Chinese, Arabic
 - Genomics

- Track: Basic task organization
- Previous tracks:
 - Ad-hoc Basic retrieval from fixed document set
 - Cross-language Query in one language, docs in other
 - English, French, Spanish, Italian, German, Chinese, Arabic
 - Genomics
 - Spoken Document Retrieval

- Track: Basic task organization
- Previous tracks:
 - Ad-hoc Basic retrieval from fixed document set
 - Cross-language Query in one language, docs in other
 - English, French, Spanish, Italian, German, Chinese, Arabic
 - Genomics
 - Spoken Document Retrieval
 - Video search

- Track: Basic task organization
- Previous tracks:
 - Ad-hoc Basic retrieval from fixed document set
 - Cross-language Query in one language, docs in other
 - English, French, Spanish, Italian, German, Chinese, Arabic
 - Genomics
 - Spoken Document Retrieval
 - Video search
 - Question Answering

Current TREC tracks

• TREC 2013:

- Contextual Suggestion
- Crowdsourcing
- Federated Web Search
- Knowledge-base Acceleration
- Microblog
- Session
- Temporal Summarization
- Web

• International:

• CLEF (Europe); NTCIR (Japan); FIRE (India)

- International:
 - CLEF (Europe); NTCIR (Japan); FIRE (India)
- Other NIST:
 - DUC (Document Summarization)
 - Machine Translation
 - Topic Detection & Tracking

- International:
 - CLEF (Europe); NTCIR (Japan); FIRE (India)
- Other NIST:
 - DUC (Document Summarization)
 - Machine Translation
 - Topic Detection & Tracking
- Various:
 - CoNLL (NE, parsing,...); SENSEVAL: WSD; PASCAL (morphology); BioNLP (biological entities, relations)

- International:
 - CLEF (Europe); NTCIR (Japan); FIRE (India)
- Other NIST:
 - DUC (Document Summarization)
 - Machine Translation
 - Topic Detection & Tracking
- Various:
 - CoNLL (NE, parsing,...); SENSEVAL: WSD; PASCAL (morphology); BioNLP (biological entities, relations)
 - Mediaeval (multi-media information access)

- Several years (1999-2007)
 - Started with pure factoid questions from news sources

- Several years (1999-2007)
 - Started with pure factoid questions from news sources
 - Extended to lists, relationship

- Several years (1999-2007)
 - Started with pure factoid questions from news sources
 - Extended to lists, relationship
 - Extended to blog data
 - Employed question series

- Several years (1999-2007)
 - Started with pure factoid questions from news sources
 - Extended to lists, relationship
 - Extended to blog data
 - Employed question series
 - Added temporal constraints
 - 'Complex, interactive' evaluation

- Several years (1999-2007)
 - Started with pure factoid questions from news sources
 - Extended to lists, relationship
 - Extended to blog data
 - Employed question series
 - Added temporal constraints
 - 'Complex, interactive' evaluation
- Combined with summarization to form TAC (2008---)
 - Text Analytics Conference
 - Opinion Q/A, Knowledge-based population, Scientific Summarization

• Provides:

- Lists of questions
- Document collections (licensed via LDC)
- Ranked document results
- Evaluation tools: Answer verification patterns
- Derived resources:
 - E.g. Roth and Li's question categories, training/test
- Reams of related publications

Questions

- <top>
 - <num> Number: 894
 - <desc> Description: How far is it from Denver to Aspen?
- </top>

Questions

- <top>
 - <num> Number: 894
 - <desc> Description: How far is it from Denver to Aspen?
- </top>
- <top>
 - <num> Number: 895
 - <desc> Description: What county is Modesto, California in?

• </top>

Documents

- <DOC><DOCNO> APW20000817.0002 </DOCNO>
- <DOCTYPE> NEWS STORY </DOCTYPE><DATE_TIME> 2000-08-17 00:05 </ DATE_TIME>
- <BODY> <HEADLINE> 19 charged with drug trafficking </HEADLINE>
- <TEXT><P>
- UTICA, N.Y. (AP) Nineteen people involved in a drug trafficking ring in the Utica area were arrested early Wednesday, police said.
- </P><P>
- Those arrested are linked to 22 others picked up in May and comprise "a major cocaine, crack cocaine and marijuana distribution organization," according to the U.S. Department of Justice.
- </P>

Answer Keys

- 1394: French
- 1395: Nicole Kidman
- 1396: Vesuvius
- 1397: 62,046
- 1398: 1867
- 1399: Brigadoon

Reminder

• Team up!