Pseudo-relevance Feedback & Passage Retrieval

Ling573 NLP Systems & Applications April 16, 2013

Major Issue in Retrieval

- All approaches operate on term matching
 - If a synonym, rather than original term, is used, approach can fail

Major Issue

- All approaches operate on term matching
 - If a synonym, rather than original term, is used, approach can fail
- Develop more robust techniques
 - Match "concept" rather than term

Major Issue

- All approaches operate on term matching
 - If a synonym, rather than original term, is used, approach can fail

- Develop more robust techniques
 - Match "concept" rather than term
 - Mapping techniques
 - Associate terms to concepts
 - Aspect models, stemming

Major Issue

- All approaches operate on term matching
 - If a synonym, rather than original term, is used, approach can fail
- Develop more robust techniques
 - Match "concept" rather than term
 - Mapping techniques
 - Associate terms to concepts
 - Aspect models, stemming
 - Expansion approaches
 - Add in related terms to enhance matching

Reduce surface term variation to concepts

- Reduce surface term variation to concepts
- Stemming

- Reduce surface term variation to concepts
- Stemming
- Aspect models
 - Matrix representations typically very sparse

- Reduce surface term variation to concepts
- Stemming
- Aspect models
 - Matrix representations typically very sparse
 - Reduce dimensionality to small # key aspects
 - Mapping contextually similar terms together
 - Latent semantic analysis

Can apply to query or document

- Can apply to query or document
- Thesaurus expansion
 - Use linguistic resource thesaurus, WordNet to add synonyms/related terms

- Can apply to query or document
- Thesaurus expansion
 - Use linguistic resource thesaurus, WordNet to add synonyms/related terms
- Feedback expansion
 - Add terms that "should have appeared"

- Can apply to query or document
- Thesaurus expansion
 - Use linguistic resource thesaurus, WordNet to add synonyms/related terms
- Feedback expansion
 - Add terms that "should have appeared"
 - User interaction
 - Direct or relevance feedback
 - Automatic pseudo relevance feedback

- Typical queries very short, ambiguous
 - Cat: animal/Unix command

- Typical queries very short, ambiguous
 - Cat: animal/Unix command
 - Add more terms to disambiguate, improve
- Relevance feedback

- Typical queries very short, ambiguous
 - Cat: animal/Unix command
 - Add more terms to disambiguate, improve
- Relevance feedback
 - Retrieve with original queries
 - Present results
 - Ask user to tag relevant/non-relevant

- Typical queries very short, ambiguous
 - Cat: animal/Unix command
 - Add more terms to disambiguate, improve
- Relevance feedback
 - Retrieve with original queries
 - Present results
 - Ask user to tag relevant/non-relevant
 - "push" toward relevant vectors, away from non-relevant
 - Vector intuition:
 - Add vectors from relevant documents
 - Subtract vector from non-relevant documents

Relevance Feedback

Rocchio expansion formula

$$\vec{q}_{i+1} = \vec{q}_i + \frac{\beta}{R} \sum_{j=1}^{R} \vec{r}_j - \frac{\gamma}{S} \sum_{k=1}^{S} \vec{s}_k$$

- $\beta + \gamma = 1 (0.75, 0.25);$
 - Amount of 'push' in either direction
- R: # rel docs, S: # non-rel docs
- r: relevant document vectors
- s: non-relevant document vectors
- Can significantly improve (though tricky to evaluate)

- Xu & Croft 97 (classic)
- Thesaurus expansion problematic:
 - Often ineffective
 - Issues:

- Xu & Croft 97 (classic)
- Thesaurus expansion problematic:
 - Often ineffective
 - Issues:
 - Coverage:
 - Many words esp. NEs missing from WordNet

- Xu & Croft 97 (classic)
- Thesaurus expansion problematic:
 - Often ineffective
 - Issues:
 - Coverage:
 - Many words esp. NEs missing from WordNet
 - Domain mismatch:
 - Fixed resources 'general' or derived from some domain
 - May not match current search collection
 - Cat/dog vs cat/more/ls

- Xu & Croft 97 (classic)
- Thesaurus expansion problematic:
 - Often ineffective
 - Issues:
 - Coverage:
 - Many words esp. NEs missing from WordNet
 - Domain mismatch:
 - Fixed resources 'general' or derived from some domain
 - May not match current search collection
 - Cat/dog vs cat/more/ls
 - Use collection-based evidence: global or local

- Identifies word cooccurrence in whole collection
 - Applied to expand current query
 - Context can differentiate/group concepts

- Identifies word cooccurrence in whole collection
 - Applied to expand current query
 - Context can differentiate/group concepts
- Create index of concepts:
 - Concepts = noun phrases (1-3 nouns long)

- Identifies word cooccurrence in whole collection
 - Applied to expand current query
 - Context can differentiate/group concepts
- Create index of concepts:
 - Concepts = noun phrases (1-3 nouns long)
 - Representation: Context
 - Words in fixed length window, 1-3 sentences

- Identifies word cooccurrence in whole collection
 - Applied to expand current query
 - Context can differentiate/group concepts
- Create index of concepts:
 - Concepts = noun phrases (1-3 nouns long)
 - Representation: Context
 - Words in fixed length window, 1-3 sentences
 - Concept identifies context word documents
- Use query to retrieve 30 highest ranked concepts
 - Add to query

Local Analysis

Aka local feedback, pseudo-relevance feedback

Local Analysis

- Aka local feedback, pseudo-relevance feedback
- Use query to retrieve documents
 - Select informative terms from highly ranked documents
 - Add those terms to query

Local Analysis

- Aka local feedback, pseudo-relevance feedback
- Use query to retrieve documents
 - Select informative terms from highly ranked documents
 - Add those terms to query
- Specifically,
 - Add 50 most frequent terms,
 - 10 most frequent 'phrases' bigrams w/o stopwords
 - Reweight terms

Local Context Analysis

- Mixes two previous approaches
 - Use query to retrieve top n passages (300 words)
 - Select top m ranked concepts (noun sequences)
 - Add to query and reweight

Local Context Analysis

- Mixes two previous approaches
 - Use query to retrieve top n passages (300 words)
 - Select top m ranked concepts (noun sequences)
 - Add to query and reweight

- Relatively efficient
- Applies local search constraints

Improvements over baseline:

Local Context Analysis: +23.5% (relative)

• Local Analysis: +20.5%

• Global Analysis: +7.8%

Improvements over baseline:

Local Context Analysis: +23.5% (relative)

Local Analysis: +20.5%

• Global Analysis: +7.8%

- LCA is best and most stable across data sets
 - Better term selection that global analysis

Improvements over baseline:

Local Context Analysis: +23.5% (relative)

Local Analysis: +20.5%

• Global Analysis: +7.8%

- LCA is best and most stable across data sets
 - Better term selection that global analysis
- All approaches have fairly high variance
 - Help some queries, hurt others

- Improvements over baseline:
 - Local Context Analysis: +23.5% (relative)
 - Local Analysis: +20.5%
 - Global Analysis: +7.8%
- LCA is best and most stable across data sets
 - Better term selection that global analysis
- All approaches have fairly high variance
 - Help some queries, hurt others
- Also sensitive to # terms added, # documents

hypnosis	meditation	practitioners
dentists	antibodies	disorders
psychiatry	immunodeficiency-virus	anesthesia
susceptibility	therapists	dearth
atoms	van-dyke	self
confession	stare	proteins
katie	johns-hopkins-university	growing-acceptance
reflexes	voltage	ad-hoc
correlation	conde-nast	dynamics
ike	illnesses	hoffman

Local Analysis

hypnot	hypnotiz	19960500
psychosomat	psychiatr	immun
mesmer	franz	suscept
austrian	dyck	psychiatrist
shesaid	tranc	professor
hallucin	18th	centur
hilgard	11th	unaccept
19820902	syndrom	exper
physician	told	patient

LCA

ľ			•
	hypnosis	brain-wave	msburns
	technique	pulse	reed
	brain	msolness	trance
	hallucination	process	circuit
	van-dyck	behavior	suggestion
	case	spiegel	finding
	hypnotizables	subject	van-dyke
П			

What are the different techniques used to create self-induced hypnosis?

Passage Retrieval

- Documents: wrong unit for QA
 - Highly ranked documents
 - High weight terms in common with query
 - Not enough!

Passage Retrieval

- Documents: wrong unit for QA
 - Highly ranked documents
 - High weight terms in common with query
 - Not enough!
 - Matching terms scattered across document
 - Vs
 - Matching terms concentrated in short span of document
- Solution:
 - From ranked doc list, select and rerank shorter spans
 - Passage retrieval

- Goal: Select passages most likely to contain answer
- Factors in reranking:

- Goal: Select passages most likely to contain answer
- Factors in reranking:
 - Document rank

- Goal: Select passages most likely to contain answer
- Factors in reranking:
 - Document rank
 - Want answers!

- Goal: Select passages most likely to contain answer
- Factors in reranking:
 - Document rank
 - Want answers!
 - Answer type matching
 - Restricted Named Entity Recognition

- Goal: Select passages most likely to contain answer
- Factors in reranking:
 - Document rank
 - Want answers!
 - Answer type matching
 - Restricted Named Entity Recognition
 - Question match:
 - Question term overlap
 - Span overlap: N-gram, longest common sub-span
 - Query term density: short spans w/more qterms

Quantitative Evaluation of Passage Retrieval for QA

- Tellex et al.
- Compare alternative passage ranking approaches
 - 8 different strategies + voting ranker
- Assess interaction with document retrieval

Comparative IR Systems

- PRISE
 - Developed at NIST
 - Vector Space retrieval system
 - Optimized weighting scheme

Comparative IR Systems

- PRISE
 - Developed at NIST
 - Vector Space retrieval system
 - Optimized weighting scheme
- Lucene
 - Boolean + Vector Space retrieval
 - Results Boolean retrieval RANKED by tf-idf
 - Little control over hit list

Comparative IR Systems

- PRISE
 - Developed at NIST
 - Vector Space retrieval system
 - Optimized weighting scheme
- Lucene
 - Boolean + Vector Space retrieval
 - Results Boolean retrieval RANKED by tf-idf
 - Little control over hit list
- Oracle: NIST-provided list of relevant documents

- Eight different systems used in QA
 - Units
 - Factors

- Eight different systems used in QA
 - Units
 - Factors
- MITRE:
 - Simplest reasonable approach: baseline
 - Unit: sentence
 - Factor: Term overlap count

- Eight different systems used in QA
 - Units
 - Factors
- MITRE:
 - Simplest reasonable approach: baseline
 - Unit: sentence
 - Factor: Term overlap count
- MITRE+stemming:
 - Factor: stemmed term overlap

- Okapi bm25
 - Unit: fixed width sliding window

• Unit: fixed width sliding window
• Factor:
$$Score(q,d) = \sum_{i=1}^{N} idf(q_i) \frac{tf_{q_i,d}(k_1+1)}{tf_{q_i,d} + k_1(1-b+(b*\frac{|D|}{avgdl})}$$

• k1=2.0; b=0.75

- Okapi bm25
 - Unit: fixed width sliding window

• Factor:
$$Score(q,d) = \sum_{i=1}^{N} idf(q_i) \frac{tf_{q_i,d}(k_1+1)}{tf_{q_i,d} + k_1(1-b+(b*\frac{|D|}{avgdl})}$$

• k1=2.0; b=0.75

- MultiText:
 - Unit: Window starting and ending with query term
 - Factor:
 - Sum of IDFs of matching query terms
 - Length based measure * Number of matching terms

- IBM:
 - Fixed passage length
 - Sum of:
 - Matching words measure: Sum of idfs of overlap terms
 - Thesaurus match measure:
 - Sum of idfs of question wds with synonyms in document
 - Mis-match words measure:
 - Sum of idfs of questions wds NOT in document
 - Dispersion measure: # words b/t matching query terms
 - Cluster word measure: longest common substring

- SiteQ:
 - Unit: n (=3) sentences
 - Factor: Match words by literal, stem, or WordNet syn
 - Sum of
 - Sum of idfs of matched terms
 - Density weight score * overlap count, where

- SiteQ:
 - Unit: n (=3) sentences
 - Factor: Match words by literal, stem, or WordNet syn
 - Sum of
 - Sum of idfs of matched terms
 - Density weight score * overlap count, where

$$dw(q,d) = \frac{\sum_{j=1}^{k-1} idf(q_j) + idf(q_{j+1})}{\alpha \times dist(j,j+1)^2} \times overlap$$

$$k-1$$

- Alicante:
 - Unit: n (= 6) sentences
 - Factor: non-length normalized cosine similarity

- Alicante:
 - Unit: n (= 6) sentences
 - Factor: non-length normalized cosine similarity

- |S|:
 - Unit: sentence
 - Factors: weighted sum of
 - Proper name match, query term match, stemmed match

Experiments

- Retrieval:
 - PRISE:
 - Query: Verbatim quesiton
 - Lucene:
 - Query: Conjunctive boolean query (stopped)

Experiments

- Retrieval:
 - PRISE:
 - Query: Verbatim quesiton
 - Lucene:
 - Query: Conjunctive boolean query (stopped)
- Passage retrieval: 1000 word passages
 - Uses top 200 retrieved docs
 - Find best passage in each doc
 - Return up to 20 passages
 - Ignores original doc rank, retrieval score

Pattern Matching

- Litkowski pattern files:
 - Derived from NIST relevance judgments on systems
 - Format:
 - Qid answer_pattern doc_list
 - Passage where answer_pattern matches is correct
 - If it appears in one of the documents in the list

Pattern Matching

- Litkowski pattern files:
 - Derived from NIST relevance judgments on systems
 - Format:
 - Qid answer_pattern doc_list
 - Passage where answer_pattern matches is correct
 - If it appears in one of the documents in the list
- MRR scoring
 - Strict: Matching pattern in official document
 - Lenient: Matching pattern

Examples

- Example
 - Patterns
 - 1894 (190|249|416|440)(\s|\-)million(\s|\-)milles?
 APW19980705.0043 NYT19990923.0315
 NYT19990923.0365 NYT20000131.0402
 NYT19981212.0029
 - 1894 700-million-kilometer APW19980705.0043
 - 1894 416 million mile NYT19981211.0308
 - Ranked list of answer passages
 - 1894 0 APW19980601.0000 the casta way weas
 - 1894 0 APW19980601.0000 440 million miles
 - 1894 0 APW19980705.0043 440 million miles

Evaluation

- MRR
 - Strict: Matching pattern in official document
 - Lenient: Matching pattern
- Percentage of questions with NO correct answers

Evaluation

- MRR
 - Strict: Matching pattern in official document
 - Lenient: Matching pattern
- Percentage of questions with NO correct answers

	Strict				
	$\mathbf{L}\mathbf{u}$	cene	\mathbf{PF}	RISE	TREC
Algorithm	MRR	% Inc.	MRR	% Inc.	% Inc.
IBM	0.326	49.20%	0.331	39.60%	44.3%
ISI	0.329	48.80%	0.287	41.80%	41.7%
SiteQ	0.323	48.00%	0.358	40.40%	56.1%
MultiText	0.354	46.40%	0.325	41.60%	43.1%
Alicante	0.296	50.00%	0.321	42.60%	60.4%
bm25	0.312	48.80%	0.252	46.00%	n/a
stemmed MITRE	0.250	52.60%	0.242	58.60%	n/a
MITRE	0.271	49.40%	0.189	52.00%	n/a
Averages	0.309	49.15%	0.297	45.33%	n/a
Voting with IBM, ISI, SiteQ	0.350	39.80%	0.352	39.00%	n/a

Evaluation on Oracle Docs

Algorithm	# Incorrect	% Incorrect	MRR
IBM	31	7.18%	0.851
SiteQ	32	7.41%	0.859
ISI	37	8.56%	0.852
Alicante	39	9.03%	0.816
MultiText	44	10.19%	0.845
bm25	45	10.42%	0.810
MITRE	45	10.42%	0.800
stemmed MITRE	63	14.58%	0.762

Overall

- PRISE:
 - Higher recall, more correct answers

Overall

- PRISE:
 - Higher recall, more correct answers
- Lucene:
 - Higher precision, fewer correct, but higher MRR

Overall

- PRISE:
 - Higher recall, more correct answers
- Lucene:
 - Higher precision, fewer correct, but higher MRR
- Best systems:
 - IBM, ISI, SiteQ
 - Relatively insensitive to retrieval engine

Analysis

- Retrieval:
 - Boolean systems (e.g. Lucene) competitive, good MRR
 - Boolean systems usually worse on ad-hoc

Analysis

- Retrieval:
 - Boolean systems (e.g. Lucene) competitive, good MRR
 - Boolean systems usually worse on ad-hoc
- Passage retrieval:
 - Significant differences for PRISE, Oracle
 - Not significant for Lucene -> boost recall

Analysis

- Retrieval:
 - Boolean systems (e.g. Lucene) competitive, good MRR
 - Boolean systems usually worse on ad-hoc
- Passage retrieval:
 - Significant differences for PRISE, Oracle
 - Not significant for Lucene -> boost recall
- Techniques: Density-based scoring improves
 - Variants: proper name exact, cluster, density score

Error Analysis

'What is an ulcer?'

Error Analysis

- 'What is an ulcer?'
 - After stopping -> 'ulcer'
 - Match doesn't help

Error Analysis

- 'What is an ulcer?'
 - After stopping -> 'ulcer'
 - Match doesn't help
 - Need question type!!
- Missing relations
 - 'What is the highest dam?'
 - Passages match 'highest' and 'dam' but not together
 - Include syntax?